[1]
T. L. Wahl,Dam breach modeling-an overview of analysis methods, Joint Federal Interagency Conference on Sedimentation and Hydrologic Modeling (2010) pp.1-7.
Google Scholar
[2]
S. Yue, E. Damisse, and M. Ansar,Methodology for Earthen Dam Breach Analysis, in World Env. and Water Reso. Congress 2016© ASCE(2016), pp.100-110.
DOI: 10.1061/9780784479872.011
Google Scholar
[3]
L. Zhang, M. Peng, D. Chang, and Y. Xu, Dam failure mechanisms and risk assessment, John Wiley & Sons Singapore Pte. Ltd., 2016.
Google Scholar
[4]
W. T. L., Uncertainty of predictions of embankment dam breach parameters, J. of Hydraulic Engineering (2004) Vol.130, pp.389-397.
DOI: 10.1061/(asce)0733-9429(2004)130:5(389)
Google Scholar
[5]
L. S. Bentaher, and H. G. Elmazoghi,Estimation of dam breach widths using a neuro-fuzzy computing technique, Seventeenth International Water Technology Conference, IWTC17(2013), pp.1-13.
Google Scholar
[6]
P. O. Ali, and E. Tarkan, Peak discharge prediction due to embankment dam break by using sensitivity analysis based ANN, KSCE Journal of Civil Engineering (2014), Vol. 18(6), pp.1868-1876.
DOI: 10.1007/s12205-014-0047-8
Google Scholar
[7]
S. A. N. Vallejo, Hydraulic engineering failure of large dams, Msc., Cvil engineering, Graz University of Technology, 2016.
Google Scholar
[8]
T. C. MacDonald, and J. Langridge-Monopolis, Breaching characteristics of dam failures, J. of Hydraulic Engineering (1984), Vol.110(5), pp.567-586.
DOI: 10.1061/(asce)0733-9429(1984)110:5(567)
Google Scholar
[9]
S. L. Hunt, G. J. Hanson, K. R. Cook, and K. C. Kadavy, Breach widening observations from earthen embankment tests, American Society of Agricultural Engineers (2005), Vol.48(3), pp.1115-1120.
DOI: 10.13031/2013.18521
Google Scholar
[10]
A. E. T. Committee, Earthen Embankment Breaching, J. of Hydraulic Eng.ASCE(2011), Vol. 137(12), pp.1549-1564.
DOI: 10.1061/(asce)hy.1943-7900.0000498
Google Scholar
[11]
Zhong Qiming, Wang Meng, Wu Weiming, and Chen Shengshui, Comparison of simplified physically based dam breach models, Springer 84,(2016), p.1385–1418.
DOI: 10.1007/s11069-016-2492-9
Google Scholar
[12]
Xu Y, and Zhang L M, Breaching Parameters for Earth and Rockfill Dams, J. Geotech. Geoenviron.Eng. (2009), Vol. 135, pp.1957-1970.
DOI: 10.1061/(asce)gt.1943-5606.0000162
Google Scholar
[13]
J. Jan, and Ř. Jaromír, The failure of embankment dams due to overtopping, 2008.
Google Scholar
[14]
W. T. L., Prediction of embankment dam breach parameters, U.S. Department of the Interior Bureau of Reclamation Dam Dam Safety Resea, 1998.
Google Scholar
[15]
Bo Wang, Ting Zhang, Qin Zhou, Chao Wu, Yun-liang Chen, and Ping Wu, A case study of the Tangjiashan landslide dam-break, J.Hydrodyn. (2014), Vol. 27(2), pp.223-233.
DOI: 10.1016/s1001-6058(15)60476-0
Google Scholar
[16]
USBR, Guidelines for defining inundated areas downstream from Bureau of Reclamation dams, Reclamation Planning Instruction, No. 82-11; 15 June 1982, U.S. Bureau of Reclamation, 1982.
Google Scholar
[17]
USBR, Downstream hazard classification guidelines Assistant Commissioner-Engineering and Research, Denver, Colorado ACER Technical Memorandum No. 11, 1988.
Google Scholar
[18]
F. D. C., Peak outflow from breached embankment dam, J. Water Resour. Plan. Manage. Div., ASCE (1995a), Vol.121(1), pp.90-97.
DOI: 10.1061/(asce)0733-9496(1995)121:1(90)
Google Scholar
[19]
F. David, Embankment dam breach parameters revisited, Water Resource Eng. (1995b), pp.887-891.
Google Scholar
[20]
M. Mark, H. Mohamed, KortenhausAndreas, and V. Paul, Breaching Processes: A state of the art review 2009b.
Google Scholar
[21]
W. Weiming, Introduction to DLBreach-A Simplified Physically-Based Dam/Levee Breach Model (Version 2016.4), Clarkson University,Clarkson Avenue Potsdam, NY 13699, USA, 2016.
Google Scholar
[22]
W. T. L., H. G. J., C. Jean-Robert, M. M. W., K. René, M. J. T., and G. M. D., Development of next-generation embankment dam breach models, J. Hydraul. Eng.(2008), pp.767-779.
Google Scholar
[23]
X. Jiang, J. Huang, Z. W. Y. I. Niu, F. Chen, Z. Zou, and Z. Zhu, The influence of materials on the breaching process of natural dams, Springer-Verlag GmbH Germany (2017), pp.1-13.
Google Scholar
[24]
D. M. L., and M. G. H., Predicting loss of life in cases of dam failure and flash flood, Society for risk analysis (1993), Vol.13(2), pp.193-205.
DOI: 10.1111/j.1539-6924.1993.tb01069.x
Google Scholar
[25]
G. W. J., A Procedure for estimating loss of life caused by dam failure, U.S. Department of Interior Bureau of Reclamation Dam Safety Office Denver, Colorado, 1999.
Google Scholar
[26]
S. K. P., Sensitivity of outflow peaks and flood stages to the selection of dam breach parameters and simulation models, J. of Hydrology (1984), Vol.1-4(68), pp.295-310.
DOI: 10.1016/0022-1694(84)90217-8
Google Scholar
[27]
T. L. Wahl,Predicting Embankment Dam Breach Parameters-A Needs Assessment, XXVIIth IAHR Congress San Francisco, California (1997) pp.1-8.
Google Scholar
[28]
D. M. Gee,Comparison of Dam Breach Parameter Estimators, World Environmental and Water Resources Congress 2009: Great Rivers © 2009 ASCE, 2009.
DOI: 10.1061/41036(342)339
Google Scholar
[29]
B. C. A., and G. W. J., Assessing the threat to life from dam failure (1988), Vol. 24(6), pp.1303-1309.
Google Scholar
[30]
P. M. W., T. C. I., and A. S. R., Predicting Peak Outflow from Breached Embankment Dams, J. Hydrol. Eng. (2010), Vol. 15(5), pp.338-349.
DOI: 10.1061/(asce)he.1943-5584.0000197
Google Scholar
[31]
F. D.L., BREACH: An erosion model for earthen dam failures, Natl.Weather Serv.NOAA,Silver Spring, Maryland, 1998.
Google Scholar
[32]
W. T. L., Evaluation of erodibility-based embankment dam breach equations series, U.S. Dept. of the Interior, Bureau of Reclamation, Denver, Colorado, Hydraulic Laboratory Report HL-2014-02, 2014.
Google Scholar
[33]
S. V. Y. P., Dam breach modelling technology, Kluwer Academic Publishers, 1996.
Google Scholar
[34]
C. G. Dan, Sensitivity and Uncertainty Analysis Theory, Chapman & HALL/CRC, 2003.
Google Scholar
[35]
B. T. A., W. Aimrun, Y. Badronnisa, and K. M. Rowshon, Dam breach parameters and their influence on flood hydrographs for mosul dam, J. of Engineering Science and Technology (2017), Vol.12(11), pp.2896-2908.
Google Scholar
[36]
W. C. J., and M. Kenji, Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance, Climate research clim research (2005), Vol.30, pp.79-82.
DOI: 10.3354/cr030079
Google Scholar
[37]
Y. A.K., and C. S.S., Solar radiation prediction using Artificial Neural Network techniques: A review, Renewable and sustainable energy reviews (2014) Vol. 33, pp.772-81.
DOI: 10.1016/j.rser.2013.08.055
Google Scholar
[38]
B. Omar, K. Abdallah, and M. Kamal, Comparison of solar radiation models and their validation under Algerian climate -The case of direct irradiance, Energy conversion and management (2015), Vol.98, pp.236-251.
DOI: 10.1016/j.enconman.2015.03.067
Google Scholar
[39]
G. Mustafa, Ö. Mehmet, B. Aslı, and D. g. A. s. Tu˘gba, Integratingmetaheuristics and Artificial Neural Networks for improved stock price prediction, Expert systems with applications (2016), Vol.44(2016), pp.320-331.
DOI: 10.1016/j.eswa.2015.09.029
Google Scholar
[40]
B. T. Eddine, M. Mohamed-Salah, and M. I. Eddine, General models for estimation of the monthly mean daily diffuse solar radiation (Case study: Algeria), Energy conversion and management (2014), Vol. 81, pp.211-219.
DOI: 10.1016/j.enconman.2014.02.035
Google Scholar
[41]
J. Yingni, Estimation of monthly mean daily diffuse radiation in China, Applied Energy (2009) Vol. 86(9), pp.1458-1464.
DOI: 10.1016/j.apenergy.2009.01.002
Google Scholar
[42]
Y. Mehmet, and C. A. Naci, A critical review on the estimation of daily global solar radiation from sunshine duration, Energy conversion and management (2006), Vol. 47(2005), pp.2441-2450.
DOI: 10.1016/j.enconman.2005.11.002
Google Scholar
[43]
E. N. A., and M. M. G., New approche for estimating global solar radation across sudan, Energy conversion and management (2000), 41(2000), pp.419-434.
DOI: 10.1016/s0196-8904(99)00123-5
Google Scholar
[44]
S. R. J., Improved statistical procedure for the evaluation of solar radiation estimation models, Solar energy (1993), Vol. 51(4), pp.289-291.
DOI: 10.1016/0038-092x(93)90124-7
Google Scholar
[45]
Y. Wanxiang, L. Zhengrong, W. Yuyan, J. Fujian, and H. Lingzhou, Evaluation of global solar radiation models for Shanghai, China, Energy conversion and management (2014), Vol. 84(2014), pp.597-612.
DOI: 10.1016/j.enconman.2014.04.017
Google Scholar
[46]
A.-M. Z.A., M. A.H., and A.-S. S.M., Sunshine-based global radiation models: A review and case study, Energy conversion and management (2014), Vol. 81(2014), pp.209-216.
DOI: 10.1016/j.enconman.2014.04.021
Google Scholar