Practical Exploration of the 'Open or Close' Concept: Evaluation of the Hygrothermal Performance of a Bioclimatic Innovation for Onion Bulb Preservation

Article Preview

Abstract:

Substantial losses occur during the storage of onion bulbs due to the inadequacy of available preservation technologies. In an endeavor to contribute to a solution, we evaluate the thermal efficacy of a bioclimatic innovation known as the "solar cell" for onion bulb preservation. This assessment involves recording temperature data from both external and internal walls, as well as indoor and outdoor air temperatures, solar irradiation, and relative humidity levels indoors. These measurements offer insights into crucial performance parameters such as thermal phase shift, thermal inertia, thermal decoupling between internal and external environments, relative humidity, damping factor, and thermal amplitude. Furthermore, we examine the impact of external factors, including external temperature and solar radiation. Across different facades, the thermal phase shift of the chamber's structure averages between 5.5 and 10.87 hours. Notably, the maximum thermal phase shift is observed to be 11.67 hours on the Eastern wall. The lowest recorded thermal damping factor is 0.081 on the Western wall, while the highest is 0.337 on the Northern wall. The study of thermal decoupling between the internal and external environments reveals a potential temperature differential of 13.7°C and 9.5°C during the day, and-6°C at night, contingent on the time of year. Consequently, the "close or open" operational mode proves to be of significant interest. Exposed to solar radiation peaking at 1041 W/m2, the temperatures of the external facades of the walls experience a substantial increase, reaching up to 52.3°C. Meanwhile, the internal environment maintains a thermal range of 24.21°C to 31.68°C under a maximum airflow of 0.18 m/s. The average relative humidity within the storage chamber fluctuates between 42.65% and 87%. Hence, the solar cell demonstrates its capacity to create optimal conditions of 25°C-30°C and 0.062 m/s for onion bulb conservation. Nevertheless, further enhancements are warranted for effective humidity control.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

65-87

Citation:

Online since:

July 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Ahmad and D. Zhang, A critical review of comparative global historical energy consumption and future demand: The story told so far, Energy Reports. 6 (2020) 1973–1991.

DOI: 10.1016/j.egyr.2020.07.020

Google Scholar

[2] H. Maamar, Choix de l'orientation des Matériaux de Construction en Vue d'Améliorer les performances Thermiques des batiments, université abou-bakr belkaïd – tlemcen, 2014.

Google Scholar

[3] L. Pérez-Lombard, J. Ortiz, and C. Pout, A review on buildings energy consumption information, Energy Build. 40 (2008) 394–398.

DOI: 10.1016/j.enbuild.2007.03.007

Google Scholar

[4] L. Yang, H. Yan, and J. C. Lam, Thermal comfort and building energy consumption implications - A review, Appl. Energy. 115 (2014) 164–173.

DOI: 10.1016/j.apenergy.2013.10.062

Google Scholar

[5] E. S. Abd Elraouf R, Elmokadem A, Megahed N, Eleinen O, Evaluating urban outdoor thermal comfort: a validation of ENVI-met simulation through field measurement, J. Build. Perform. Simul. 15 (2022) 268–286.

DOI: 10.1080/19401493.2022.2046165

Google Scholar

[6] D.S. Noaman, S.A. Moneer, N.A. Megahed, and S.A. El-ghafour, Integration of active solar cooling technology into passively designed facade in hot climates, J. Build. Eng. 56 (2022) 1- 23.

DOI: 10.1016/j.jobe.2022.104658

Google Scholar

[7] R. A. Ali, N. A. Megahed, M. M. Shahda, and A. M. Hassan, Natural ventilation as a passive cooling strategy for multi ‑ story buildings : analytic vertical skycourt formations, Territ. Archit. 10 (2023) 1–16.

DOI: 10.1186/s40410-023-00212-6

Google Scholar

[8] M. Shahda and R. Adel, Effect of Mass Formation on Indoor Thermal Performance in the Arab Region, port-said engineering research journal. 23 (2019) 1-9.

DOI: 10.21608/pserj.2019.32530

Google Scholar

[9] A.O. Shehata, N.A. Megahed, M.M. Shahda, and A.M. Hassan, (3Ts) Green conservation framework: A hierarchical-based sustainability approach, Build. Environ. 224 (2022) 1-14.

DOI: 10.1016/j.buildenv.2022.109523

Google Scholar

[10] K. Zhang et al., Thermal performance and energy consumption analysis of eight types of extensive green roofs in subtropical monsoon climate, Build. Environ. 216 (2022) 1-10.

DOI: 10.1016/j.buildenv.2022.108982

Google Scholar

[11] I. Urban, E. Resilience, W. An, F. Based, O. N. Machine, and L. Methods, Urban Planning and Development improving urban energy resilience with an integrative, Architecture and Engineering. 7 (2022) 17-35.

Google Scholar

[12] M. Ozel and C. Ozel, Effects of wall orientation and thermal insulation on time lag and decrement factor, 9th Int. Conf. Heat Transf. Thermodyn. Malta, July (2012) 680–684.

Google Scholar

[13] P. Santos, C. Martins, and E. Júlio, Enhancement of the thermal performance of perforated clay brick walls through the addition of industrial nano-crystalline aluminium sludge, Constr. Build. Mater. 101 (2015) 227–238.

DOI: 10.1016/j.conbuildmat.2015.10.058

Google Scholar

[14] M. H. Abdul Nasir and A. S. Hassan, Thermal performance of double brick wall construction on the building envelope of high-rise hotel in Malaysia, J. Build. Eng. 31 (2020) 1-11.

DOI: 10.1016/j.jobe.2020.101389

Google Scholar

[15] H. Asan, Numerical computation of time lags and decrement factors for different building materials, Build. Environ. 41 (2006) 615–620.

DOI: 10.1016/j.buildenv.2005.02.020

Google Scholar

[16] S.A. Al-Sanea, M.F. Zedan, and S.N. Al-Hussain, Effect of thermal mass on performance of insulated building walls and the concept of energy savings potential, Appl. Energy. 89 (2012) 430–442.

DOI: 10.1016/j.apenergy.2011.08.009

Google Scholar

[17] B. Arregi, R. Garay-Martinez, J. Astudillo, M. García, and J. C. Ramos, Experimental and numerical thermal performance assessment of a multi-layer building envelope component made of biocomposite materials, Energy Build. 214 (2020) 1-10.

DOI: 10.1016/j.enbuild.2020.109846

Google Scholar

[18] T.G. Theodosiou, A.G. Tsikaloudaki, K.J. Kontoleon, and D.K. Bikas, Thermal bridging analysis on cladding systems for building facades, Energy Build. 109 (2015) 377–384.

DOI: 10.1016/j.enbuild.2015.10.037

Google Scholar

[19] U. Berardi and L. Ákos, Thermal bridges of metal fasteners for aerogel-enhanced blankets, Energy Build. 185 (2019) 307–315.

DOI: 10.1016/j.enbuild.2018.12.041

Google Scholar

[20] J.H. Song, J.H. Lim, and S.Y. Song, Evaluation of alternatives for reducing thermal bridges in metal panel curtain wall systems, Energy Build. 127 (2016) 138–158.

DOI: 10.1016/j.enbuild.2016.05.078

Google Scholar

[21] S.Y. Song, J.S. Yi, and B. K. Koo, Insulation plan of aluminum curtain wall-fastening unit for high-rise residential complex, Build. Environ. 43 (2008) 1310–1317.

DOI: 10.1016/j.buildenv.2007.03.013

Google Scholar

[22] A. Stonkuvienė, R. Bliūdžius, A. Burlingis, and J. Ramanauskas, The impact of connector's thermal and geometrical characteristics on the energy performance of facade systems, J. Build. Eng. 35 (2021) 1-13.

DOI: 10.1016/j.jobe.2020.102085

Google Scholar

[23] R. Ji, Z. Zhang, Y. He, J. Liu, and S. Qu, Simulating the effects of anchors on the thermal performance of building insulation systems, Energy Build. 140 (2017) 501–507.

DOI: 10.1016/j.enbuild.2016.12.036

Google Scholar

[24] T. Theodosiou, K. Tsikaloudaki, S. Tsoka, and P. Chastas, Thermal bridging problems on advanced cladding systems and smart building facades, J. Clean. Prod. 214 (2019) 62–69.

DOI: 10.1016/j.jclepro.2018.12.286

Google Scholar

[25] A.F. Tzikopoulos, M.C. Karatza, and J.A. Paravantis, Modeling energy efficiency of bioclimatic buildings, Energy Build. 37 (2005) 529–544.

DOI: 10.1016/j.enbuild.2004.09.002

Google Scholar

[26] F. Manzano-Agugliaro, F. G. Montoya, A. Sabio-Ortega, and A. García-Cruz, Review of bioclimatic architecture strategies for achieving thermal comfort, Renew. Sustain. Energy Rev. 49 (2015) 736–755.

DOI: 10.1016/j.rser.2015.04.095

Google Scholar

[27] S. Shaik, K. Gorantla, A. Babu, and T. Puttaranga, Investigation of Building Walls Exposed to Periodic Heat Transfer Conditions for Green and Energy Efficient Building Construction, Procedia Technol. 23 (2016) 496 – 503.

DOI: 10.1016/j.protcy.2016.03.055

Google Scholar

[28] Seema T. Borole, Rajesh Burbade, and Anil Shinde, Comparative Losses and Economic Feasibility of the Improved Onion Storage with Low Cost of Onion Storage Structure, Ijmer. 3 (2013) 2656–2661.

Google Scholar

[29] W. Endalew, A. Getahun, A. Demissew, and T. Ambaye, Storage performance of naturally ventilated structure for onion bulbs, Agric Eng Int CIGR J. 16, (2014) 97–101.

Google Scholar

[30] W. Tarpaga and A. Rouamba, Effects of the production season and the size of onion bulbs (Allium cepa L.) on their storage life at room temperature and humidity in Burkina Faso, Agric. Biol. J. North Am. 2 (2011) 1072–1078.

DOI: 10.5251/abjna.2011.2.7.1072.1078

Google Scholar

[31] V. Siva Shankar, G. Velmurugan, R. Prathiba, D. S. Poornima, M. Suvetha, and V. Keerthiga, Effect of on-farm storage structure on physical and bio-chemical changes in aggregatum onion, Mater. Today Proc. 72 (2023) 2417–2422.

DOI: 10.1016/j.matpr.2022.09.429

Google Scholar

[32] P. C. Tripathi and K. E. Lawande, Onion storage in tropical region — a review, Curr. Hortic. 7 (2019) 15.

Google Scholar

[33] Linus U. Opara, Onion Post-harvest Operations-Post-harvest Compendium, Aug. 2003.

Google Scholar

[34] P. Tripathi, K. E. Lawande, M. Phule, K. Vidyapeeth, and P. C. Tripathi, Designing and evaluation of onion storage structures for Indian conditions, Int. J. Agric. Sci. 6 (2016) 918–924.

Google Scholar

[35] S.M.A. Bekkouche, T. Benouaz, M.K. Cherier, M. Hamdani, M.R. Yaiche, and N. Benamrane, Influence of the compactness index to increase the internal temperature of a building in Saharan climate, Energy Build. 66 (2013) 678–687.

DOI: 10.1016/j.enbuild.2013.07.077

Google Scholar

[36] B. Ouedraogo, K. Palm, E. Ouedraogo, D. J. Bathiebo, and S. Kam, Experimental Study of Thermophysical and Mechanical Properties of Refractory Clay Tilled into Straw-fiber Stabilized Blocks, Phys. Sci. Int. J. 12 (2016) 1–8.

DOI: 10.9734/psij/2016/29586

Google Scholar

[37] O. Jo and C. Philip, Performance Evaluation of Refractory Bricks produced from locally sourced Clay Materials, J. Appl. Sci. Environ. Manag. 18 (2014) 151–157.

DOI: 10.4314/jasem.v18i2.1

Google Scholar

[38] J. A. Omotoyinbo and O. O. Oluwole, Working Properties of Some Selected Refractory Clay Deposits in South Western Nigeria, J. Miner. Mater. Charact. Eng. 7 (2008) 233–245.

DOI: 10.4236/jmmce.2008.73018

Google Scholar

[39] B. Traore, Y. Sawadogo, L. Zerbo, and M. Seynou, Résistance aux chocs thermiques etaux attaques chimiquesde briques réfractaires à base d ' argile kaolinitique et de sable, J. la Société Ouest-Africaine Chim. 050 (2021) 50–56.

Google Scholar

[40] D. Vitiello, B. Nait-Ali, N. Tessier-Doyen, T. Tonnesen, L. Laím, L. Rebouillat, D. S. Smith, Thermal conductivity of insulating refractory materials : Comparison of steady-state and transient measurement methods, Open Ceram. 6 (2021) 1-9.

DOI: 10.1016/j.oceram.2021.100118

Google Scholar

[41] B.S.M. El Amine, Modélisation du Comportement Thermique de Quelques Dispositifs Solaires, Univ. Abou-Bakr Belkaid -Tlemcen, 2009.

Google Scholar

[42] M.R. Yaiche, A. Bouhanika, S.M.A. Bekkouche, A. Malek, and T. Benouaz, Revised solar maps of Algeria based on sunshine duration, Energy Convers. Manag. 82 (2014) 114–123.

DOI: 10.1016/j.enconman.2014.02.063

Google Scholar

[43] Hukseflux, USER MANUAL SR03, (2007)

Google Scholar

[44] WMO, Guide to Meteorological Instruments and Methods of Observation, Secretariat of the WMO, 2006.

Google Scholar

[45] R.J. Duffin and G. Knowles, A passive wall design to minimize building temperature swings, Sol. Energy. 33 (1984) 337–342.

DOI: 10.1016/0038-092x(84)90163-4

Google Scholar

[46] Joint Committee for Guides in Metrology, Évaluation des données de mesure — Guide pour l 'expression de l ' incertitude de mesure, Première éd., BIPM, 2008.

DOI: 10.59161/jcgm100-2008f

Google Scholar

[47] H. Fathy, Natural Energy and Vernacular Architecture: Principles and Examples with Reference to Hot Arid Climates, 1St Editio. USA: University Of Chicago Press, 1986.

Google Scholar

[48] F. Moore, Environmental control systems heating, cooling, Lighting., Internatio. New York: McGraw-Hill, Inc. New York, 1993.

Google Scholar

[49] C. Sun, S. Shu, G. Ding, X. Zhang, and X. Hu, Investigation of time lags and decrement factors for different building outside temperatures, Energy Build. 61 (2013) 1–7.

DOI: 10.1016/j.enbuild.2013.02.003

Google Scholar

[50] J.C. B. and D.W.B.S.A. Baggs, Australian Earth-Covered Buildings, Dual Harmon. Publ., 1991.

Google Scholar

[51] E.A. Fayçal El Fgaiera, Zoubeir Lafhaja, Franck Bracheletb and C. Chapiseauc, Thermal performance of unfired clay bricks used in construction in the north of France : Case study, Case Stud. Constr. Mater. 3 (2015) 102–111.

DOI: 10.1016/j.cscm.2015.09.001

Google Scholar

[52] X. Jin, X. Zhang, Y. Cao, and G. Wang, Thermal performance evaluation of the wall using heat flux time lag and decrement factor, Energy Build. 47 (2012) 369–374.

DOI: 10.1016/j.enbuild.2011.12.010

Google Scholar

[53] S. Sandwidi, A. Compaore, K. Haro, T. Dabilgou, and S. Sinon, Hygrothermal Study of a House Made of Local Biosourced Materials Based on Clay : Experimental Study, OJAppS. 13 (2023) 60–75.

DOI: 10.4236/ojapps.2023.131006

Google Scholar

[54] C.R. Ruivo, P.M. Ferreira, and D.C. Vaz, On the error of calculation of heat gains through walls by methods using constant decrement factor and time lag values, Energy Build. 60 (2013) 252–261.

DOI: 10.1016/j.enbuild.2013.02.001

Google Scholar

[55] S. Shaik, A. Babu, and T. Puttaranga, Influence of Ambient Air Relative Humidity and Temperature on Thermal Properties and Unsteady Thermal Response Characteristics of Laterite Wall Houses, Build. Environ. 99 (2016)  170-183.

DOI: 10.1016/j.buildenv.2016.01.030

Google Scholar

[56] M. A. Kamal, The Study of Thermal Mass as a Passive Design Technique for Building Comfort and Energy Efficiency, J. Civ. Eng. Archit. 5 (2011) 84–88.

Google Scholar

[57] D. Bencheikh and M. Bederina, Assessing the duality of thermal performance and energy efficiency of residential buildings in hot arid climate of Laghouat, Algeria, Int. J. Energy Environ. Eng. 11 (2020) 143–162.

DOI: 10.1007/s40095-019-00318-z

Google Scholar

[58] B. Ouedraogo, A. Compaore, K. Palm, W. G. Ouedraogo, and D. J. Bathiebo, Onion bulb conservation: case of an experimental study, Int. J. Eng. Sci. Res. Technol. 8 (2020) 77–86.

Google Scholar