[1]
Akinsete, V.A., and T.A. Coleman. "Heat Transfer by Steady Laminar Free Convection in Triangular Enclosures." International Journal of Heat and Mass Transfer 25, no. 7 (July 1982): 991–98.
DOI: 10.1016/0017-9310(82)90074-6
Google Scholar
[2]
Ridouane, El Hassan, Antonio Campo, and Jane Y. Chang. "Natural Convection Patterns in Right-Angled Triangular Cavities with Heated Vertical Sides and Cooled Hypotenuses." Journal of Heat Transfer 127, no. 10 (May 3, 2005): 1181–86.
DOI: 10.1115/1.2033903
Google Scholar
[3]
Basak, Tanmay, S. Roy, and Ch. Thirumalesha. "Finite Element Analysis of Natural Convection in a Triangular Enclosure: Effects of Various Thermal Boundary Conditions." Chemical Engineering Science 62, no. 9 (May 2007): 2623–40.
DOI: 10.1016/j.ces.2007.01.053
Google Scholar
[4]
Fuad Kent, E., E. Asmaz, and S. Ozerbay. "Laminar Natural Convection in Right Triangular Enclosures." Heat and Mass Transfer 44, no. 2 (February 24, 2007): 187–200.
DOI: 10.1007/s00231-007-0239-6
Google Scholar
[5]
Varol, Y., H. F. Oztop, and T. Yilmaz. "Natural Convection in Triangular Enclosures with a Heat Source Located on the Wall." International Journal of Heat and Mass Transfer 50, no. 11–12 (2007): 2451–62
DOI: 10.1016/j.ijheatmasstransfer.2006.11.032
Google Scholar
[6]
Xu, X., Z. Yu, Y. C. Hua, L. W. Fan, and K. F. Cen. "Experimental Study on Natural Convection Heat Transfer of Ethanol–Water Mixture in a Rectangular Cavity." International Journal of Heat and Mass Transfer 53, no. 3–4 (2010): 345–55
DOI: 10.1016/j.ijheatmasstransfer.2009.09.043
Google Scholar
[7]
Xu, X., Z. Yu, Y. C. Hu, L. W. Fan, and K. F. Cen. "Numerical Investigation of Natural Convection Heat Transfer of Ethanol–Water Mixture in a Rectangular Enclosure." International Journal of Heat and Mass Transfer 55, no. 6–7 (2012): 1563–71
DOI: 10.1016/j.ijheatmasstransfer.2011.11.012
Google Scholar
[8]
Rezaiguia, I., M. Kadja, R. Mebrouk, and N. Belghar. "Numerical computation of natural convection in an isosceles triangular cavity with a partially active base and filled with a Cu–water nanofluid." Heat Mass Transfer 49, (2013): 1319–31
DOI: 10.1007/s00231-013-1170-7
Google Scholar
[9]
Sahu, K. B., and R. K. Singh. "Analysis of Heat Transfer and Flow Due to Natural Convection in Air Around Heated Triangular Cylinders of Different Sizes Inside a Square Enclosure." Procedia Engineering 90 (2014): 1319-1331
DOI: 10.1016/j.proeng.2014.11.771
Google Scholar
[10]
Triveni, M. K., R. Panua, and D. Sen. "Natural Convection in a Partially Heated Triangular Cavity with Different Configurations of Cold Walls." Arabian Journal for Science and Engineering 40, no. 11 (2015): 3285–3297
DOI: 10.1007/s13369-015-1778-7
Google Scholar
[11]
Mirabedin, S. M. "CFD Modeling of Natural Convection in Right-Angled Triangular Enclosures." International Journal of Heat and Technology 34, no. 3 (2016): 503–506
DOI: 10.18280/ijht.340322
Google Scholar
[12]
Selimefendigil, Fatih, Hakan F. Öztop, and Ali J. Chamkha. "Analysis of Mixed Convection and Entropy Generation of Nanofluid-Filled Triangular Enclosure with a Flexible Sidewall under the Influence of a Rotating Cylinder." Journal of Thermal Analysis and Calorimetry 131, no. 3 (2018): 2027–2039
DOI: 10.1007/s10973-017-6773-7
Google Scholar
[13]
Amrani, A. I., N. Dihmani, S. Amraqui, and A. Mezrhab. "Combined Natural Convection and Thermal Radiation Heat Transfer in a Triangular Enclosure with an Inner Rectangular Body." Defect and Diffusion Forum 384 (2018): 49–68
DOI: 10.4028/www.scientific.net/DDF.384.49
Google Scholar
[14]
Abbasian Arani, A. A., and M. Kazemi. "Analysis of Fluid Flow and Heat Transfer of Nanofluid Inside Triangular Enclosure Equipped with Rotational Obstacle." Journal of Mechanical Science and Technology 33, no. 10 (2019): 4917–4929
DOI: 10.1007/s12206-018-0428-x
Google Scholar
[15]
Mohammed, A. A., A. A. Mohammed, and S. V. Channapattanac. "Experimental Investigation into Natural Convection Heat Transfer inside Triangular Enclosure with Internal Hot Cylinder." Al-Nahrain Journal for Engineering Sciences 26, no. 3 (2023): 102–115
DOI: 10.29194/NJES.26020102
Google Scholar
[16]
Faisal, S. H., B. S. Aziz, T. A. Jabbar, and R. S. Hameed. "Hydrodynamic Study of a Solar Chimney Power Plant for Better Power Production." Thermal Science 27, no. 5 (2023): 3949–3961
DOI: 10.2298/tsci220819042f
Google Scholar
[17]
Holman J P, Heat Transfer, 9th ed, McGraw Hill, 2001.
Google Scholar