[1]
B. Agostini, F. Agostini and M. Habert, Modeling of a Von Platen-Munters diffusion absorption refrigeration cycle, J. Phys.: Conf. Ser. 745 (2016) 032053.
DOI: 10.1088/1742-6596/745/3/032053
Google Scholar
[2]
International Institute of Refrigeration (IIR), Discover the 35th IIR Informatory Note on "The Impact of the Refrigeration Sector on Climate Change," 2017. Information provided by the user.
DOI: 10.1016/0140-7007(88)90122-3
Google Scholar
[3]
P. Srikhirin, S. Aphornratana and S. Chungpaibulpatana, A review of absorption refrigeration technologies, Renew. Sustain. Energy Rev. 5 (2000) 343–372.
DOI: 10.1016/s1364-0321(01)00003-x
Google Scholar
[4]
J.L. Rodríguez-Muñoz and J. M. Belman-Flores, Review of diffusion–absorption refrigeration technologies, Renew. Sustain. Energy Rev. 30 (2014) 145–153.
DOI: 10.1016/j.rser.2013.09.019
Google Scholar
[5]
A.A.S. Lima, J.S. Talpada, P.V. Ramana et al., Absorption refrigeration systems based on ammonia as refrigerant using different absorbents: Review and applications, Energies 14 (2020) 48.
Google Scholar
[6]
J. S. Talpada and P. V. Ramana, A review on performance of absorption refrigeration system using new working pairs and nanoparticles, Int. J. Ambient Energy 43 (2021) 5654–5672.
DOI: 10.1080/01430750.2021.1953589
Google Scholar
[7]
B.-J. R. Mungyeko Bisulandu, R. Mansouri and A. Ilinca, Diffusion absorption refrigeration systems: An overview of thermal mechanisms and models, Energies 16 (2023) 3610.
DOI: 10.3390/en16093610
Google Scholar
[8]
F. Gutiérrez, Behavior of a household absorption-diffusion refrigerator adapted to autonomous solar operation, Solar Energy 40 (1988) 17–23.
DOI: 10.1016/0038-092x(88)90067-9
Google Scholar
[9]
J. Koehler, W. J. Tegethoff, D. Westphalen and M. Sonnekalb, Absorption refrigeration system for mobile applications utilizing exhaust gases, Int. Commun. Heat Mass Transf. 32 (1997) 333–340.
DOI: 10.1007/s002310050130
Google Scholar
[10]
A. T. Bulgan, Use of low-temperature energy sources in aqua-ammonia absorption refrigeration systems, Energy Convers. Manage. 38 (1997) 1431–1438.
DOI: 10.1016/0196-8904(95)00351-7
Google Scholar
[11]
C. Wu, L. Chen and F. Sun, Optimization of solar absorption refrigerator, vol. Il, no. 2 (1997) 203–208.
Google Scholar
[12]
U. Jakob, U. Eicker and P. U. Barth, Absorption Cooling by Sun and Waste Energy, (2006) 20–28.
Google Scholar
[13]
A.H. Taki and M. J. Cook, Proceedings of the ISES Solar World Congress 16, (2003) 1–6.
Google Scholar
[14]
U. Jakob and U. Eicker, Solar cooling with diffusion absorption principle, World Renewable Energy Congress VII, (2002).
Google Scholar
[15]
U. Jakob, Investigations into Solar Powered Diffusion Absorption Cooling Machines, unpub. MPhil to PhD Transfer Report, De Montfort Univ., Leicester, UK, (2001).
Google Scholar
[16]
B. Chaouachi and S. Gabsi, Design and simulation of an absorption diffusion solar refrigeration unit, Am. J. Appl. Sci. 4 (2007) 85–88.
DOI: 10.3844/ajassp.2007.85.88
Google Scholar
[17]
A. A. Manzela, S. M. Hanriot, L. Cabezas-Gómez and J. R. Sodré, Using engine exhaust gas as energy source for an absorption refrigeration system, Appl. Energy 87 (2010) 1141–1148.
DOI: 10.1016/j.apenergy.2009.07.018
Google Scholar
[18]
R. S. Lavanya and B. S. R. Murthy, Design of solar water cooler using aqua-ammonia absorption refrigeration system, Int. J. Adv. Eng. Res. Stud. 2 (2013) 20–24.
Google Scholar
[19]
Z.J. Chien, H.-P. Cho, C.-S. Jwo, C.C. Chien, S.-L. Chen and Y.-L. Chen, Experimental investigation on an absorption refrigerator driven by solar cells, Int. J. Photoenergy (2013) 1–6.
DOI: 10.1155/2013/490124
Google Scholar
[20]
W. I. A. Aly, M. Abdo, G. Bedair and A. E. Hassaneen, Thermal performance of a diffusion absorption refrigeration system driven by waste heat from diesel engine exhaust gases, Appl. Therm. Eng. 114 (2017) 621–630.
DOI: 10.1016/j.applthermaleng.2016.12.019
Google Scholar
[21]
J. Freeman, A. Ramos, N. Mac Dowell and C. N. Markides, An experimentally validated model of a solar-cooling system based on an ammonia-water diffusion-absorption cycle, 8th Int. Conf. Appl. Energy – ICAE2016, (2016).
Google Scholar
[22]
C. Stanciu, D. Stanciu and A.-T. Gheorghian, Thermal analysis of a solar powered absorption cooling system with fully mixed thermal storage at startup, Energies 10 (2017).
DOI: 10.3390/en10010072
Google Scholar
[23]
A. Najjaran, J. Freeman, A. Ramos and C. N. Markides, Experimental investigation of an ammonia-water-hydrogen diffusion absorption refrigerator, Appl. Energy 256 (2019) 113899.
DOI: 10.1016/j.apenergy.2019.113899
Google Scholar
[24]
S. Hanriot, P. Brito, C. Maia and A. Rêgo, Analysis of working parameters for an ammonia-water absorption refrigeration system powered by automotive exhaust gas, Case Stud. Therm. Eng. 13 (2019) 100406.
DOI: 10.1016/j.csite.2019.100406
Google Scholar
[25]
M. Kumar and R. Das, Experimental analysis of absorption refrigeration system driven by waste heat of diesel engine exhaust, Therm. Sci. 23 (2019) 149–157.
DOI: 10.2298/tsci160311003k
Google Scholar
[26]
B.M. Goortani, F. Babaei, A.A. Alemrajabi and M. Mostajaboddavati, Direct effects of solar irradiance on a concentrated solar powered water-ammonia absorption refrigerator, Int. J. Renew. Energy Res. 9 (2019) 384–392.
DOI: 10.20508/ijrer.v9i1.8422.g7595
Google Scholar
[27]
M.M. Hussein, K.I. Hamada and O.K. Ahmed, A comparison between exhaust gas and electrical grid heating of a diffusion absorption refrigerator, IOP Conf. Ser. Mater. Sci. Eng. 1094 (2021) 012092.
DOI: 10.1088/1757-899x/1094/1/012092
Google Scholar
[28]
B. Gurevich and A. Zohar, Analytical model for the prediction of performance of a solar driven diffusion absorption cooling system, Int. J. Thermodyn. 24 (2021) 42–48.
DOI: 10.5541/ijot.929863
Google Scholar
[29]
E. Bellos, I. Chatzovoulos and C. Tzivanidis, Yearly investigation of a solar-driven absorption refrigeration system with ammonia-water absorption pair, Therm. Sci. Eng. Prog. 23 (2021).
DOI: 10.1016/j.tsep.2021.100885
Google Scholar
[30]
Jawad, K., A. Abdulrazzak, and A.-S. Ahmed, Experimental Investigation of Direct Solar Photovoltaics that Drives Absorption Refrigeration System. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 2023. 106(1): pp.116-135.
DOI: 10.37934/arfmts.106.1.116135
Google Scholar
[31]
C. Çetiner, Thermal analysis of operating a solar-powered diffusion absorption refrigerator with a parabolic collector, Case Stud. Therm. Eng. 53 (2024) 103893.
DOI: 10.1016/j.csite.2023.103893
Google Scholar
[32]
J. Freeman and C. N. Markides, A solar diffusion-absorption refrigeration system for off-grid cold-chain provision. Part I: Model development and experimental calibration, Renew. Energy 230 (2024) 120718.
DOI: 10.1016/j.renene.2024.120718
Google Scholar
[33]
J. Freeman and C. N. Markides, A solar diffusion-absorption refrigeration system for off-grid cold-chain provision. Part II: System simulation and assessment of performance, Renew. Energy 230 (2024) 120717.
DOI: 10.1016/j.renene.2024.120717
Google Scholar
[34]
R. Swartman, V. Ha and C. Swaminathan, Comparison of ammonia-water and ammonia-sodium thiocyanate as the refrigerant-absorbent in a solar refrigeration system, Solar Energy 17 (1975).
DOI: 10.1016/0038-092x(75)90068-7
Google Scholar
[35]
Trindade G.S., et al., Cop determination, heat transfer fluid selection, and transient response of a solar powered diffusion absorption refrigerator for vaccine storage, J. Adv. Res. Fluid Mech. Therm. Sci. (2024) In press.
DOI: 10.2139/ssrn.4974862
Google Scholar
[36]
Ferreira, D.A., et al., Evaluation of the coupling of Linear Fresnel Reflectors to a refrigerator operating on a diffusion-absorption cycle. Results in Engineering, 2025. 25.
DOI: 10.1016/j.rineng.2025.104355
Google Scholar
[37]
Swartman R., Ha V., Swaminathan C., Comparison of ammonia-water and ammonia-sodium thiocyanate as the refrigerant-absorbent in a solar refrigeration system, Sol. Energy 17 (1975) 123–127.
DOI: 10.1016/0038-092x(75)90068-7
Google Scholar
[38]
Sun D.-W., Comparison of the performances of NH3-H2O, NH3-LiNO3 and NH3-NaSCN absorption refrigeration systems, Energy Convers. Manage. 39 (1998) 357–368.
DOI: 10.1016/s0196-8904(97)00027-7
Google Scholar
[39]
Zohar A., Jelinek M., Levy A., Borde I., Numerical investigation of a diffusion absorption refrigeration cycle, Int. J. Refrig. 28 (2005) 515–525.
DOI: 10.1016/j.ijrefrig.2004.11.003
Google Scholar
[40]
Zohar A., Jelinek M., Levy A., Borde I., Performance of diffusion absorption refrigeration cycle with organic working fluids, Int. J. Refrig. 32 (2009) 1241–1246.
DOI: 10.1016/j.ijrefrig.2009.01.010
Google Scholar
[41]
Wang H. D., Experimental study on LiNO3-NH3 diffusion-absorption refrigeration system, Key Eng. Mater. 474–476 (2011) 2335–2340.
Google Scholar
[42]
Wang Q., Gong L., Wang J.P., Sun T.F., Cui K., Chen G.M., A numerical investigation of a diffusion absorption refrigerator operating with the binary refrigerant for low temperature applications, Appl. Therm. Eng. 31 (2011) 1763–1769.
DOI: 10.1016/j.applthermaleng.2011.02.021
Google Scholar
[43]
Wang H., A new style solar-driven diffusion absorption refrigerator and its operating characteristics, Energy Procedia 18 (2012) 681–692.
DOI: 10.1016/j.egypro.2012.05.083
Google Scholar
[44]
Abdel H.E., Tora H., Computer Aided Design and Simulation of Working Fluid Pairs for Absorption Refrigerators, Int. J. Sci. Eng. Res. 4 (2013) 1306–1310.
Google Scholar
[45]
Sözen A., Özbaş E., Menlik T., Çakır M.T., Gürü M., Boran K., Improving the thermal performance of diffusion absorption refrigeration system with alumina nanofluids: An experimental study, Int. J. Refrig. 44 (2014) 73–80.
DOI: 10.1016/j.ijrefrig.2014.04.018
Google Scholar
[46]
Lee J.K., Lee K.-R., Kang Y.T., Development of binary nanoemulsion to apply for diffusion absorption refrigerator as a new refrigerant, Energy 78 (2014) 693–700.
DOI: 10.1016/j.energy.2014.10.060
Google Scholar
[47]
Acuña A., Lara F., Velázquez N., Cerezo J., Thermal analysis of an ammonia-water absorption refrigeration system powered by low-temperature heat sources, Int. J. Refrig. 45 (2014) 128–135.
DOI: 10.1016/j.ijrefrig.2014.05.016
Google Scholar
[48]
De Pascalis L., Starace G., Carluccio F., Handbook of Research Advances in Applied Refrigeration Systems and Technologies, Adv. Mechatron. Mech. Eng., ch. 2 (2015) 36–84.
Google Scholar
[49]
Rattner A.S., Garimella S., Performance evaluation of absorption refrigeration systems: Part I, Int. J. Refrig. 65 (2016) 287–311.
Google Scholar
[50]
Rattner A.S., Garimella S., Performance evaluation of absorption refrigeration systems: Part II, Int. J. Refrig. 65 (2016) 312–329.
Google Scholar
[51]
Zhang B., Chen W., Sun Q., Miao Z., Experimental investigation on an absorption refrigeration system driven by low-grade heat, Energy Convers. Manage. 152 (2017) 201–213.
Google Scholar
[52]
Garma R., Bellagi A., Bourouis M., Design and performance analysis of a solar-powered absorption refrigeration system, Revue des Energies Renouvelables ICESD'11 Adrar 1 (2011).
Google Scholar
[53]
Tiwari T., Performance evaluation of solar-assisted absorption refrigeration system, Int. J. Res. Appl. Sci. Eng. Technol. 5 (2017) 2105–2111.
Google Scholar
[54]
Gürbüz E.Y., Sözen A., Keçebaş A., Özbaş E., Experimental investigation of nanofluid-enhanced absorption refrigeration system, Exp. Heat Transf. 35 (2020) 197–222.
DOI: 10.1080/08916152.2020.1838668
Google Scholar
[55]
Sözen A., Keçebaş A., Gürbüz E.Y., Heat and mass transfer analysis of a nanofluid-based absorption refrigeration system, Heat Mass Transf. 57 (2021) 1583–1592.
DOI: 10.1007/s00231-021-03046-5
Google Scholar
[56]
Lee G., Choi H.W., Kang Y.T., Thermal performance evaluation of solar diffusion absorption refrigeration system, Energy 217 (2021) 119328.
Google Scholar
[57]
Harraz A.A., Freeman J., Wang K., Mac Dowell N.M., Markides C.N., Experimental study on a solar-driven absorption refrigeration system, Energy Procedia 158 (2019) 2360–2365.
DOI: 10.1016/j.egypro.2019.01.284
Google Scholar
[58]
Valiyandi S., Thampi G., Performance analysis of solar absorption refrigeration system using low-grade heat, Environ. Prog. Sustain. Energy 41(6) (2022).
Google Scholar
[59]
Garma R., Ben-Ezzine N., Bellagi A., Thermodynamic analysis of ammonia-water absorption refrigeration system, Int. J. Thermofluids 27 (2025).
DOI: 10.1016/j.ijft.2025.101246
Google Scholar
[60]
Kouremenos D.A., Stegou-Sagia A., Investigation of low-temperature absorption refrigeration systems, Int. J. Refrig. 11 (1988) 153–158.
DOI: 10.1016/0140-7007(88)90029-1
Google Scholar
[61]
Chen J., Kim K.J., Herold K.E., Experimental analysis of ammonia-water absorption refrigeration system, Int. J. Refrig. 19 (1996) 208–218.
Google Scholar
[62]
Vicatos G., Analysis of three-fluid absorption refrigeration machine, Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 214 (2000) 157–172.
DOI: 10.1243/0954408001530029
Google Scholar
[63]
Zulu A., Thermodynamic analysis of a three-fluid absorption refrigeration machine, MSc Thesis, University of Cape Town (2000).
Google Scholar
[64]
Srikhirin P., Aphornratana S., Performance analysis of ammonia-water absorption refrigeration system, Appl. Therm. Eng. 22 (2002) 1181–1193.
Google Scholar
[65]
Koyfman A., Jelinek M., Levy A., Borde I., Numerical simulation of ammonia-water diffusion absorption refrigeration system, Appl. Therm. Eng. 23 (2003) 1881–1894.
DOI: 10.1016/s1359-4311(03)00162-5
Google Scholar
[66]
Vicatos G., Absorption refrigeration machines – Heat and mass transfer characteristics, PhD Thesis, University of Cape Town (1995).
Google Scholar
[67]
Zohar A., Jelinek M., Levy A., Borde I., Experimental investigation on ammonia-water diffusion absorption system, Appl. Therm. Eng. 27 (2007) 2213–2219.
Google Scholar
[68]
Zohar A., Jelinek M., Levy A., Borde I., Performance evaluation of diffusion absorption refrigeration system with ammonia-water pair, Int. J. Refrig. 31 (2008) 962–969.
DOI: 10.1016/j.ijrefrig.2008.01.009
Google Scholar
[69]
Vicatos G., Bennett A., Thermal analysis of absorption refrigeration systems, J. Energy South. Afr. 18 (2007) 49–57.
Google Scholar
[70]
Huang Y.W., Sun D.X., Thermal performance evaluation of ammonia-water absorption refrigeration cycle, Adv. Mater. Res. 354–355 (2011) 773–778.
Google Scholar
[71]
Sözen A., Menlik T., Özbaş E., Performance enhancement of absorption refrigeration systems with nanofluids, Appl. Therm. Eng. 33–34 (2012) 44–53.
DOI: 10.1016/j.applthermaleng.2011.09.009
Google Scholar
[72]
Starace G., De Pascalis L., Thermodynamic analysis of ammonia-water absorption refrigeration systems, Int. J. Refrig. 36 (2013) 1495–1503.
Google Scholar
[73]
Dometic© (formerly Electrolux in Europe), Available from: www.dometic.com (2004).
Google Scholar
[74]
Benhimidene A., Chaouachi B., Gabsi S., Performance evaluation of solar absorption refrigeration system, Int. J. Control. Energy Electr. Eng. 2 (2014) 1–5.
Google Scholar
[75]
Mazouz S., Mansouri R., Bellagi A., Experimental investigation on ammonia-water absorption refrigeration system, Int. J. Refrig. 45 (2014) 83–91.
DOI: 10.1016/j.ijrefrig.2014.06.002
Google Scholar
[76]
Belman-Flores J.M., Rodríguez-Muñoz J.L., Rubio-Maya C., Ramírez-Minguela J.J., Pérez-García V., Experimental and numerical analysis of diffusion absorption refrigeration system, Appl. Therm. Eng. 71 (2014) 1–10.
DOI: 10.1016/j.applthermaleng.2014.06.034
Google Scholar
[77]
Ersöz M.A., Performance analysis of absorption refrigeration systems, Int. J. Refrig. 54 (2015) 10–21.
Google Scholar
[78]
Vasudev V., Dondapati R.S., Thermal performance analysis of solar diffusion absorption system, Energy Procedia 109 (2017) 401–408.
Google Scholar
[79]
Singh K.P., Singh O., Performance evaluation of ammonia-water absorption refrigeration system using solar energy, Int. J. Renew. Energy Res. 8 (2018) 1729–1739.
Google Scholar
[80]
Chaves F.D., Moreira M.F.S., Koury R.N., Machado L., Cortez M.F.B., Experimental study of ammonia-water absorption refrigeration system, Int. J. Refrig. 47 (2019) 101–136.
DOI: 10.1016/j.ijrefrig.2019.01.019
Google Scholar
[81]
Wang, Q., et al., Experiments on the performance of bubble pumps with R134a/R23-DMF solutions for diffusion absorption refrigerator. Applied Thermal Engineering, 2020. 177.
DOI: 10.1016/j.applthermaleng.2020.115481
Google Scholar
[82]
Abuhabaya A., Rady M., Aljahdli M., Almatrafi E., Al Batati F., Attar A., Performance evaluation of ammonia-water absorption refrigeration system, Case Stud. Therm. Eng. 52 (2023) 103802.
DOI: 10.1016/j.csite.2023.103802
Google Scholar
[83]
Aria M., Cuccurullo C., bibliometrix: An R-tool for comprehensive science mapping analysis, J. Informetr. 11 (2017) 959–975.
DOI: 10.1016/j.joi.2017.08.007
Google Scholar
[84]
Donthu N., Kumar S., Mukherjee D., Pandey N., Lim W.M., How to conduct a bibliometric analysis: An overview and guidelines, J. Bus. Res. 133 (2021) 285–296.
DOI: 10.1016/j.jbusres.2021.04.070
Google Scholar
[85]
Öztürk O., Kocaman R., Kanbach D.K., Bibliometric analysis in management research: Methods and applications, Rev. Manag. Sci. 18 (2024) 3333–3361.
DOI: 10.1007/s11846-024-00738-0
Google Scholar
[86]
Sun X., Tang W., Ye T., Zhang Y., Wen B., Zhang L., Bibliometric study of integrated care systems, Int. J. Integr. Care 14 (2014) 1–12.
Google Scholar
[87]
Passas I., Bibliometric analysis: The main steps, Encyclopedia 4 (2024) 1014–1025.
DOI: 10.3390/encyclopedia4020065
Google Scholar
[88]
Triwahyuningtyas D., Sundaygara C., Widiaty I., Nandiyanto A.B.D., Aji S.D., Hudha M.N., Bibliometric analysis of renewable energy publications, IOP Conf. Ser. Mater. Sci. Eng. 1098 (2021) 032031.
DOI: 10.1088/1757-899x/1098/3/032031
Google Scholar
[89]
Jiang H., Qiang M., Lin P., Bibliometric study of renewable energy technologies, Renew. Sustain. Energy Rev. 57 (2016) 226–237.
Google Scholar
[90]
Endotoxemia M., Hospital and tourism research bibliometrics, J. Hosp. Tour. Res. (2008) Pages.
Google Scholar
[91]
Kronthaler F., Zöllner S., Data Analysis with R Studio: An Easygoing Introduction, 1st ed., Springer Spektrum Publisher (2020).
Google Scholar
[92]
Nandiyanto A.B.D., Al Husaeni D.F., Bibliometric study on engineering publications, J. Eng. Sci. Technol. 17 (2022) 883–894.
Google Scholar
[93]
Bhat W.A., Khan N.L., Manzoor A., Dada Z.A., Qureshi R.A., Bibliometric analysis of European economics journals, Eur. Econ. Lett. 13 (2023) 681–700. [94] Posit, RStudio Desktop, Available: https://posit.co/download/rstudio-desktop/ (2023).
Google Scholar
[95]
Centre for Science and Technology Studies (CWTS), VOSviewer software, Available: https://www.vosviewer.com (2023).
Google Scholar
[96]
Arruda H., Silva E.R., Lessa M., Proenca D. Jr., Bartholo R., VOSviewer and Bibliometrix: Mapping scientific knowledge, J. Med. Libr. Assoc. 110 (2022) 392–395.
DOI: 10.5195/jmla.2022.1434
Google Scholar