Comprehensive Review of Diffusion Absorption Refrigeration: Advances, Challenges, and Future Prospects

Article Preview

Abstract:

Diffusion Absorption Refrigeration (DAR) systems offer a sustainable alternative to vapor compression refrigeration by utilizing thermal energy instead of mechanical work, making them well-suited for renewable energy applications and waste heat recovery. This review presents a comprehensive analysis of DAR systems, incorporating a statistical evaluation of various research aspects. It focuses on energy sources, alternative working fluids, system configurations, and their impact on the coefficient of performance (COP) and operating temperature. The evolution of DAR technology is traced from early theoretical models to recent experimental developments, supported by a bibliometric study that highlights key research trends, contributing countries, and periods of increased academic activity. The review assesses DAR performance in terms of efficiency improvements, integration of renewable energy, and the use of alternative working fluids. Bibliometric data indicate a growing research interest since 1990, with a notable peak in 2019, and significant contributions from China, India, Germany, and the United States. The study concludes by emphasizing the need for further research into advanced working fluids, the integration of thermal energy storage to enhance stability, and the development of computational models for optimized design and performance. Addressing these challenges will help advance DAR technology as a viable, sustainable cooling solution, supporting innovation and contributing to global energy sustainability.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

51-68

Citation:

Online since:

February 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Agostini, F. Agostini and M. Habert, Modeling of a Von Platen-Munters diffusion absorption refrigeration cycle, J. Phys.: Conf. Ser. 745 (2016) 032053.

DOI: 10.1088/1742-6596/745/3/032053

Google Scholar

[2] International Institute of Refrigeration (IIR), Discover the 35th IIR Informatory Note on "The Impact of the Refrigeration Sector on Climate Change," 2017. Information provided by the user.

DOI: 10.1016/0140-7007(88)90122-3

Google Scholar

[3] P. Srikhirin, S. Aphornratana and S. Chungpaibulpatana, A review of absorption refrigeration technologies, Renew. Sustain. Energy Rev. 5 (2000) 343–372.

DOI: 10.1016/s1364-0321(01)00003-x

Google Scholar

[4] J.L. Rodríguez-Muñoz and J. M. Belman-Flores, Review of diffusion–absorption refrigeration technologies, Renew. Sustain. Energy Rev. 30 (2014) 145–153.

DOI: 10.1016/j.rser.2013.09.019

Google Scholar

[5] A.A.S. Lima, J.S. Talpada, P.V. Ramana et al., Absorption refrigeration systems based on ammonia as refrigerant using different absorbents: Review and applications, Energies 14 (2020) 48.

Google Scholar

[6] J. S. Talpada and P. V. Ramana, A review on performance of absorption refrigeration system using new working pairs and nanoparticles, Int. J. Ambient Energy 43 (2021) 5654–5672.

DOI: 10.1080/01430750.2021.1953589

Google Scholar

[7] B.-J. R. Mungyeko Bisulandu, R. Mansouri and A. Ilinca, Diffusion absorption refrigeration systems: An overview of thermal mechanisms and models, Energies 16 (2023) 3610.

DOI: 10.3390/en16093610

Google Scholar

[8] F. Gutiérrez, Behavior of a household absorption-diffusion refrigerator adapted to autonomous solar operation, Solar Energy 40 (1988) 17–23.

DOI: 10.1016/0038-092x(88)90067-9

Google Scholar

[9] J. Koehler, W. J. Tegethoff, D. Westphalen and M. Sonnekalb, Absorption refrigeration system for mobile applications utilizing exhaust gases, Int. Commun. Heat Mass Transf. 32 (1997) 333–340.

DOI: 10.1007/s002310050130

Google Scholar

[10] A. T. Bulgan, Use of low-temperature energy sources in aqua-ammonia absorption refrigeration systems, Energy Convers. Manage. 38 (1997) 1431–1438.

DOI: 10.1016/0196-8904(95)00351-7

Google Scholar

[11] C. Wu, L. Chen and F. Sun, Optimization of solar absorption refrigerator, vol. Il, no. 2 (1997) 203–208.

Google Scholar

[12] U. Jakob, U. Eicker and P. U. Barth, Absorption Cooling by Sun and Waste Energy, (2006) 20–28.

Google Scholar

[13] A.H. Taki and M. J. Cook, Proceedings of the ISES Solar World Congress 16, (2003) 1–6.

Google Scholar

[14] U. Jakob and U. Eicker, Solar cooling with diffusion absorption principle, World Renewable Energy Congress VII, (2002).

Google Scholar

[15] U. Jakob, Investigations into Solar Powered Diffusion Absorption Cooling Machines, unpub. MPhil to PhD Transfer Report, De Montfort Univ., Leicester, UK, (2001).

Google Scholar

[16] B. Chaouachi and S. Gabsi, Design and simulation of an absorption diffusion solar refrigeration unit, Am. J. Appl. Sci. 4 (2007) 85–88.

DOI: 10.3844/ajassp.2007.85.88

Google Scholar

[17] A. A. Manzela, S. M. Hanriot, L. Cabezas-Gómez and J. R. Sodré, Using engine exhaust gas as energy source for an absorption refrigeration system, Appl. Energy 87 (2010) 1141–1148.

DOI: 10.1016/j.apenergy.2009.07.018

Google Scholar

[18] R. S. Lavanya and B. S. R. Murthy, Design of solar water cooler using aqua-ammonia absorption refrigeration system, Int. J. Adv. Eng. Res. Stud. 2 (2013) 20–24.

Google Scholar

[19] Z.J. Chien, H.-P. Cho, C.-S. Jwo, C.C. Chien, S.-L. Chen and Y.-L. Chen, Experimental investigation on an absorption refrigerator driven by solar cells, Int. J. Photoenergy (2013) 1–6.

DOI: 10.1155/2013/490124

Google Scholar

[20] W. I. A. Aly, M. Abdo, G. Bedair and A. E. Hassaneen, Thermal performance of a diffusion absorption refrigeration system driven by waste heat from diesel engine exhaust gases, Appl. Therm. Eng. 114 (2017) 621–630.

DOI: 10.1016/j.applthermaleng.2016.12.019

Google Scholar

[21] J. Freeman, A. Ramos, N. Mac Dowell and C. N. Markides, An experimentally validated model of a solar-cooling system based on an ammonia-water diffusion-absorption cycle, 8th Int. Conf. Appl. Energy – ICAE2016, (2016).

Google Scholar

[22] C. Stanciu, D. Stanciu and A.-T. Gheorghian, Thermal analysis of a solar powered absorption cooling system with fully mixed thermal storage at startup, Energies 10 (2017).

DOI: 10.3390/en10010072

Google Scholar

[23] A. Najjaran, J. Freeman, A. Ramos and C. N. Markides, Experimental investigation of an ammonia-water-hydrogen diffusion absorption refrigerator, Appl. Energy 256 (2019) 113899.

DOI: 10.1016/j.apenergy.2019.113899

Google Scholar

[24] S. Hanriot, P. Brito, C. Maia and A. Rêgo, Analysis of working parameters for an ammonia-water absorption refrigeration system powered by automotive exhaust gas, Case Stud. Therm. Eng. 13 (2019) 100406.

DOI: 10.1016/j.csite.2019.100406

Google Scholar

[25] M. Kumar and R. Das, Experimental analysis of absorption refrigeration system driven by waste heat of diesel engine exhaust, Therm. Sci. 23 (2019) 149–157.

DOI: 10.2298/tsci160311003k

Google Scholar

[26] B.M. Goortani, F. Babaei, A.A. Alemrajabi and M. Mostajaboddavati, Direct effects of solar irradiance on a concentrated solar powered water-ammonia absorption refrigerator, Int. J. Renew. Energy Res. 9 (2019) 384–392.

DOI: 10.20508/ijrer.v9i1.8422.g7595

Google Scholar

[27] M.M. Hussein, K.I. Hamada and O.K. Ahmed, A comparison between exhaust gas and electrical grid heating of a diffusion absorption refrigerator, IOP Conf. Ser. Mater. Sci. Eng. 1094 (2021) 012092.

DOI: 10.1088/1757-899x/1094/1/012092

Google Scholar

[28] B. Gurevich and A. Zohar, Analytical model for the prediction of performance of a solar driven diffusion absorption cooling system, Int. J. Thermodyn. 24 (2021) 42–48.

DOI: 10.5541/ijot.929863

Google Scholar

[29] E. Bellos, I. Chatzovoulos and C. Tzivanidis, Yearly investigation of a solar-driven absorption refrigeration system with ammonia-water absorption pair, Therm. Sci. Eng. Prog. 23 (2021).

DOI: 10.1016/j.tsep.2021.100885

Google Scholar

[30] Jawad, K., A. Abdulrazzak, and A.-S. Ahmed, Experimental Investigation of Direct Solar Photovoltaics that Drives Absorption Refrigeration System. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 2023. 106(1): pp.116-135.

DOI: 10.37934/arfmts.106.1.116135

Google Scholar

[31] C. Çetiner, Thermal analysis of operating a solar-powered diffusion absorption refrigerator with a parabolic collector, Case Stud. Therm. Eng. 53 (2024) 103893.

DOI: 10.1016/j.csite.2023.103893

Google Scholar

[32] J. Freeman and C. N. Markides, A solar diffusion-absorption refrigeration system for off-grid cold-chain provision. Part I: Model development and experimental calibration, Renew. Energy 230 (2024) 120718.

DOI: 10.1016/j.renene.2024.120718

Google Scholar

[33] J. Freeman and C. N. Markides, A solar diffusion-absorption refrigeration system for off-grid cold-chain provision. Part II: System simulation and assessment of performance, Renew. Energy 230 (2024) 120717.

DOI: 10.1016/j.renene.2024.120717

Google Scholar

[34] R. Swartman, V. Ha and C. Swaminathan, Comparison of ammonia-water and ammonia-sodium thiocyanate as the refrigerant-absorbent in a solar refrigeration system, Solar Energy 17 (1975).

DOI: 10.1016/0038-092x(75)90068-7

Google Scholar

[35] Trindade G.S., et al., Cop determination, heat transfer fluid selection, and transient response of a solar powered diffusion absorption refrigerator for vaccine storage, J. Adv. Res. Fluid Mech. Therm. Sci. (2024) In press.

DOI: 10.2139/ssrn.4974862

Google Scholar

[36] Ferreira, D.A., et al., Evaluation of the coupling of Linear Fresnel Reflectors to a refrigerator operating on a diffusion-absorption cycle. Results in Engineering, 2025. 25.

DOI: 10.1016/j.rineng.2025.104355

Google Scholar

[37] Swartman R., Ha V., Swaminathan C., Comparison of ammonia-water and ammonia-sodium thiocyanate as the refrigerant-absorbent in a solar refrigeration system, Sol. Energy 17 (1975) 123–127.

DOI: 10.1016/0038-092x(75)90068-7

Google Scholar

[38] Sun D.-W., Comparison of the performances of NH3-H2O, NH3-LiNO3 and NH3-NaSCN absorption refrigeration systems, Energy Convers. Manage. 39 (1998) 357–368.

DOI: 10.1016/s0196-8904(97)00027-7

Google Scholar

[39] Zohar A., Jelinek M., Levy A., Borde I., Numerical investigation of a diffusion absorption refrigeration cycle, Int. J. Refrig. 28 (2005) 515–525.

DOI: 10.1016/j.ijrefrig.2004.11.003

Google Scholar

[40] Zohar A., Jelinek M., Levy A., Borde I., Performance of diffusion absorption refrigeration cycle with organic working fluids, Int. J. Refrig. 32 (2009) 1241–1246.

DOI: 10.1016/j.ijrefrig.2009.01.010

Google Scholar

[41] Wang H. D., Experimental study on LiNO3-NH3 diffusion-absorption refrigeration system, Key Eng. Mater. 474–476 (2011) 2335–2340.

Google Scholar

[42] Wang Q., Gong L., Wang J.P., Sun T.F., Cui K., Chen G.M., A numerical investigation of a diffusion absorption refrigerator operating with the binary refrigerant for low temperature applications, Appl. Therm. Eng. 31 (2011) 1763–1769.

DOI: 10.1016/j.applthermaleng.2011.02.021

Google Scholar

[43] Wang H., A new style solar-driven diffusion absorption refrigerator and its operating characteristics, Energy Procedia 18 (2012) 681–692.

DOI: 10.1016/j.egypro.2012.05.083

Google Scholar

[44] Abdel H.E., Tora H., Computer Aided Design and Simulation of Working Fluid Pairs for Absorption Refrigerators, Int. J. Sci. Eng. Res. 4 (2013) 1306–1310.

Google Scholar

[45] Sözen A., Özbaş E., Menlik T., Çakır M.T., Gürü M., Boran K., Improving the thermal performance of diffusion absorption refrigeration system with alumina nanofluids: An experimental study, Int. J. Refrig. 44 (2014) 73–80.

DOI: 10.1016/j.ijrefrig.2014.04.018

Google Scholar

[46] Lee J.K., Lee K.-R., Kang Y.T., Development of binary nanoemulsion to apply for diffusion absorption refrigerator as a new refrigerant, Energy 78 (2014) 693–700.

DOI: 10.1016/j.energy.2014.10.060

Google Scholar

[47] Acuña A., Lara F., Velázquez N., Cerezo J., Thermal analysis of an ammonia-water absorption refrigeration system powered by low-temperature heat sources, Int. J. Refrig. 45 (2014) 128–135.

DOI: 10.1016/j.ijrefrig.2014.05.016

Google Scholar

[48] De Pascalis L., Starace G., Carluccio F., Handbook of Research Advances in Applied Refrigeration Systems and Technologies, Adv. Mechatron. Mech. Eng., ch. 2 (2015) 36–84.

Google Scholar

[49] Rattner A.S., Garimella S., Performance evaluation of absorption refrigeration systems: Part I, Int. J. Refrig. 65 (2016) 287–311.

Google Scholar

[50] Rattner A.S., Garimella S., Performance evaluation of absorption refrigeration systems: Part II, Int. J. Refrig. 65 (2016) 312–329.

Google Scholar

[51] Zhang B., Chen W., Sun Q., Miao Z., Experimental investigation on an absorption refrigeration system driven by low-grade heat, Energy Convers. Manage. 152 (2017) 201–213.

Google Scholar

[52] Garma R., Bellagi A., Bourouis M., Design and performance analysis of a solar-powered absorption refrigeration system, Revue des Energies Renouvelables ICESD'11 Adrar 1 (2011).

Google Scholar

[53] Tiwari T., Performance evaluation of solar-assisted absorption refrigeration system, Int. J. Res. Appl. Sci. Eng. Technol. 5 (2017) 2105–2111.

Google Scholar

[54] Gürbüz E.Y., Sözen A., Keçebaş A., Özbaş E., Experimental investigation of nanofluid-enhanced absorption refrigeration system, Exp. Heat Transf. 35 (2020) 197–222.

DOI: 10.1080/08916152.2020.1838668

Google Scholar

[55] Sözen A., Keçebaş A., Gürbüz E.Y., Heat and mass transfer analysis of a nanofluid-based absorption refrigeration system, Heat Mass Transf. 57 (2021) 1583–1592.

DOI: 10.1007/s00231-021-03046-5

Google Scholar

[56] Lee G., Choi H.W., Kang Y.T., Thermal performance evaluation of solar diffusion absorption refrigeration system, Energy 217 (2021) 119328.

Google Scholar

[57] Harraz A.A., Freeman J., Wang K., Mac Dowell N.M., Markides C.N., Experimental study on a solar-driven absorption refrigeration system, Energy Procedia 158 (2019) 2360–2365.

DOI: 10.1016/j.egypro.2019.01.284

Google Scholar

[58] Valiyandi S., Thampi G., Performance analysis of solar absorption refrigeration system using low-grade heat, Environ. Prog. Sustain. Energy 41(6) (2022).

Google Scholar

[59] Garma R., Ben-Ezzine N., Bellagi A., Thermodynamic analysis of ammonia-water absorption refrigeration system, Int. J. Thermofluids 27 (2025).

DOI: 10.1016/j.ijft.2025.101246

Google Scholar

[60] Kouremenos D.A., Stegou-Sagia A., Investigation of low-temperature absorption refrigeration systems, Int. J. Refrig. 11 (1988) 153–158.

DOI: 10.1016/0140-7007(88)90029-1

Google Scholar

[61] Chen J., Kim K.J., Herold K.E., Experimental analysis of ammonia-water absorption refrigeration system, Int. J. Refrig. 19 (1996) 208–218.

Google Scholar

[62] Vicatos G., Analysis of three-fluid absorption refrigeration machine, Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 214 (2000) 157–172.

DOI: 10.1243/0954408001530029

Google Scholar

[63] Zulu A., Thermodynamic analysis of a three-fluid absorption refrigeration machine, MSc Thesis, University of Cape Town (2000).

Google Scholar

[64] Srikhirin P., Aphornratana S., Performance analysis of ammonia-water absorption refrigeration system, Appl. Therm. Eng. 22 (2002) 1181–1193.

Google Scholar

[65] Koyfman A., Jelinek M., Levy A., Borde I., Numerical simulation of ammonia-water diffusion absorption refrigeration system, Appl. Therm. Eng. 23 (2003) 1881–1894.

DOI: 10.1016/s1359-4311(03)00162-5

Google Scholar

[66] Vicatos G., Absorption refrigeration machines – Heat and mass transfer characteristics, PhD Thesis, University of Cape Town (1995).

Google Scholar

[67] Zohar A., Jelinek M., Levy A., Borde I., Experimental investigation on ammonia-water diffusion absorption system, Appl. Therm. Eng. 27 (2007) 2213–2219.

Google Scholar

[68] Zohar A., Jelinek M., Levy A., Borde I., Performance evaluation of diffusion absorption refrigeration system with ammonia-water pair, Int. J. Refrig. 31 (2008) 962–969.

DOI: 10.1016/j.ijrefrig.2008.01.009

Google Scholar

[69] Vicatos G., Bennett A., Thermal analysis of absorption refrigeration systems, J. Energy South. Afr. 18 (2007) 49–57.

Google Scholar

[70] Huang Y.W., Sun D.X., Thermal performance evaluation of ammonia-water absorption refrigeration cycle, Adv. Mater. Res. 354–355 (2011) 773–778.

Google Scholar

[71] Sözen A., Menlik T., Özbaş E., Performance enhancement of absorption refrigeration systems with nanofluids, Appl. Therm. Eng. 33–34 (2012) 44–53.

DOI: 10.1016/j.applthermaleng.2011.09.009

Google Scholar

[72] Starace G., De Pascalis L., Thermodynamic analysis of ammonia-water absorption refrigeration systems, Int. J. Refrig. 36 (2013) 1495–1503.

Google Scholar

[73] Dometic© (formerly Electrolux in Europe), Available from: www.dometic.com (2004).

Google Scholar

[74] Benhimidene A., Chaouachi B., Gabsi S., Performance evaluation of solar absorption refrigeration system, Int. J. Control. Energy Electr. Eng. 2 (2014) 1–5.

Google Scholar

[75] Mazouz S., Mansouri R., Bellagi A., Experimental investigation on ammonia-water absorption refrigeration system, Int. J. Refrig. 45 (2014) 83–91.

DOI: 10.1016/j.ijrefrig.2014.06.002

Google Scholar

[76] Belman-Flores J.M., Rodríguez-Muñoz J.L., Rubio-Maya C., Ramírez-Minguela J.J., Pérez-García V., Experimental and numerical analysis of diffusion absorption refrigeration system, Appl. Therm. Eng. 71 (2014) 1–10.

DOI: 10.1016/j.applthermaleng.2014.06.034

Google Scholar

[77] Ersöz M.A., Performance analysis of absorption refrigeration systems, Int. J. Refrig. 54 (2015) 10–21.

Google Scholar

[78] Vasudev V., Dondapati R.S., Thermal performance analysis of solar diffusion absorption system, Energy Procedia 109 (2017) 401–408.

Google Scholar

[79] Singh K.P., Singh O., Performance evaluation of ammonia-water absorption refrigeration system using solar energy, Int. J. Renew. Energy Res. 8 (2018) 1729–1739.

Google Scholar

[80] Chaves F.D., Moreira M.F.S., Koury R.N., Machado L., Cortez M.F.B., Experimental study of ammonia-water absorption refrigeration system, Int. J. Refrig. 47 (2019) 101–136.

DOI: 10.1016/j.ijrefrig.2019.01.019

Google Scholar

[81] Wang, Q., et al., Experiments on the performance of bubble pumps with R134a/R23-DMF solutions for diffusion absorption refrigerator. Applied Thermal Engineering, 2020. 177.

DOI: 10.1016/j.applthermaleng.2020.115481

Google Scholar

[82] Abuhabaya A., Rady M., Aljahdli M., Almatrafi E., Al Batati F., Attar A., Performance evaluation of ammonia-water absorption refrigeration system, Case Stud. Therm. Eng. 52 (2023) 103802.

DOI: 10.1016/j.csite.2023.103802

Google Scholar

[83] Aria M., Cuccurullo C., bibliometrix: An R-tool for comprehensive science mapping analysis, J. Informetr. 11 (2017) 959–975.

DOI: 10.1016/j.joi.2017.08.007

Google Scholar

[84] Donthu N., Kumar S., Mukherjee D., Pandey N., Lim W.M., How to conduct a bibliometric analysis: An overview and guidelines, J. Bus. Res. 133 (2021) 285–296.

DOI: 10.1016/j.jbusres.2021.04.070

Google Scholar

[85] Öztürk O., Kocaman R., Kanbach D.K., Bibliometric analysis in management research: Methods and applications, Rev. Manag. Sci. 18 (2024) 3333–3361.

DOI: 10.1007/s11846-024-00738-0

Google Scholar

[86] Sun X., Tang W., Ye T., Zhang Y., Wen B., Zhang L., Bibliometric study of integrated care systems, Int. J. Integr. Care 14 (2014) 1–12.

Google Scholar

[87] Passas I., Bibliometric analysis: The main steps, Encyclopedia 4 (2024) 1014–1025.

DOI: 10.3390/encyclopedia4020065

Google Scholar

[88] Triwahyuningtyas D., Sundaygara C., Widiaty I., Nandiyanto A.B.D., Aji S.D., Hudha M.N., Bibliometric analysis of renewable energy publications, IOP Conf. Ser. Mater. Sci. Eng. 1098 (2021) 032031.

DOI: 10.1088/1757-899x/1098/3/032031

Google Scholar

[89] Jiang H., Qiang M., Lin P., Bibliometric study of renewable energy technologies, Renew. Sustain. Energy Rev. 57 (2016) 226–237.

Google Scholar

[90] Endotoxemia M., Hospital and tourism research bibliometrics, J. Hosp. Tour. Res. (2008) Pages.

Google Scholar

[91] Kronthaler F., Zöllner S., Data Analysis with R Studio: An Easygoing Introduction, 1st ed., Springer Spektrum Publisher (2020).

Google Scholar

[92] Nandiyanto A.B.D., Al Husaeni D.F., Bibliometric study on engineering publications, J. Eng. Sci. Technol. 17 (2022) 883–894.

Google Scholar

[93] Bhat W.A., Khan N.L., Manzoor A., Dada Z.A., Qureshi R.A., Bibliometric analysis of European economics journals, Eur. Econ. Lett. 13 (2023) 681–700. [94] Posit, RStudio Desktop, Available: https://posit.co/download/rstudio-desktop/ (2023).

Google Scholar

[95] Centre for Science and Technology Studies (CWTS), VOSviewer software, Available: https://www.vosviewer.com (2023).

Google Scholar

[96] Arruda H., Silva E.R., Lessa M., Proenca D. Jr., Bartholo R., VOSviewer and Bibliometrix: Mapping scientific knowledge, J. Med. Libr. Assoc. 110 (2022) 392–395.

DOI: 10.5195/jmla.2022.1434

Google Scholar