p.168
p.172
p.176
p.180
p.185
p.189
p.196
p.200
p.204
Modeling on Hydrocyclone Separation Performance by Neural Network
Abstract:
A 17-27-5 type BP neural network model was built, whose sampled data was got by hydrocyclone separation experiments; another 6-30-5 type BP neural network was also built, whose sampled data came from the simulation results of the LZVV of a hydrocyclone with CFD code FLUENT. The two neural network models also have good predictive validity aimed at hydrocyclone separation performance. It demonstrates LZVV structural parameters can embody hydrocyclone separation performance and reduce input parameter numbers of neural network model. It also indicates that the predictive model of hydrocyclone separation performance can be built by neural network.
Info:
Periodical:
Pages:
185-188
Citation:
Online since:
September 2011
Authors:
Keywords:
Price:
Сopyright:
© 2012 Trans Tech Publications Ltd. All Rights Reserved
Share:
Citation: