Antagonistic Mechanism of Fusarium Oxysporum of Soybean Root Rot by Bacillus Subtilis

Article Preview

Abstract:

. Fusarium oxysporum is a soil-borne fungus that infects soybean roots and causes soybean root rot, a widespread and destructive soybean disease. The potential strain X6 belonged to Bacillus subtilis for controlling soybean root rot. And antagonistic mechanism of the pathogenic Fusarium oxysporum of soybean root rot by B. subtilis X6 was investigated. The antagonistic mechanism of strain X6 againt F. oxysporum can effectively inhibit mycelial growth, spores bearing and germination. After treated with metabolic product of strain X6, protoplast from the hyphae became abnormal. The activity effect of metabolic product of strain X6 was sensitive to temperature. So the study lay the groundwork for further research and application.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

127-131

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. -C. Fenille, N. -L. Souza, and E. -E. Kuramae, Characterization of Rhizoctonia solani associated with soybean in Brazil, European Journal of Plant Pathology, vol. 108, pp.783-792, June (2002).

DOI: 10.1023/a:1020811019189

Google Scholar

[2] C. -G. Li, X. -M. Li, W. -D. Kong, Y. Wu, and J. -G. Wang, Effect of monoculture soybean on soil microbial community in the Northeast China, Plant Soil, vol. 30, p.423–433, (2010).

DOI: 10.1007/s11104-009-0216-6

Google Scholar

[3] X. -Y. Zheng, and J. -B. Sinclair, The effects of traits of Bacillus megaterium on seed and root colonization and their correlation with the suppression of Rhizoctonia root rot of soybean, Biocontrol, vol. 45, pp.223-243, (2000).

Google Scholar

[4] I. -A. Siddiqui, S. Ehetshamul-Haque, and S. -S. Shaukat, Use of rhizobacteria in the control of root rot-root knot disease complex of mungbean, J. Phytopathol., vol. 149, pp.337-346, (2001).

DOI: 10.1046/j.1439-0434.2001.00630.x

Google Scholar

[5] T. Manso, C. Nunes, S. Raposo, and M. -E. Lima-Costa, Production of the biocontrol agent Pantoea agglomerans PBC-1 in a stirred tank reactor by batch and fed-batch cultures, World Journal of Microbiology and Biotechnology, vol. 26, no. 4, pp.725-735, (2009).

DOI: 10.1007/s11274-009-0229-6

Google Scholar

[6] C. -L. Wilson, and E Chalutz, Postharvest biological control of penicillium rots of citrus with antagonistic yeasts and bacteria, Sci. Hortic., vol. 40, pp.105-112, (1989).

DOI: 10.1016/0304-4238(89)90092-7

Google Scholar

[7] M. -S. Elisabeth, G. -H. John, and S. -T, Williams Berney's Manual of Systematic Bacteriolony, Baltimore & Wilkins, 1989, Vol. 4, in America.

Google Scholar

[8] H. -M. Liu, J. -H. Guo, Y. -J. Cheng, L. Luo, P. Liu, B. -Q. Wang, B. -X. Deng, and C. -A. Long, Control of gray mold of grape by Hanseniaspora uvarum and its effects on postharvest quality parameters, Ann. Microbiol., vol. 60, pp.31-35, (2010).

DOI: 10.1007/s13213-010-0018-3

Google Scholar

[9] J. -Y. Lee, S. -S. Moon, and B. -K. Hwang, Isolation and Antifungal and Antioomycete Activities of Aerugine Produced by Pseudomonas fluorescens Strain MM-B16, Appl. Environ. Microbiol., vol. 69, no. 4, p.2023–2031, (2003).

DOI: 10.1128/aem.69.4.2023-2031.2003

Google Scholar

[10] C. Klein, and K. -D. Entian, Genes involved in self-protection against the lantibiotic subtilin produced by Bacillus subtilis ATCC 6633, Appl. Environ. Microbiol., vol. 60, p.2793–2801, (1994).

DOI: 10.1128/aem.60.8.2793-2801.1994

Google Scholar

[11] B. Hyronimus, M. -C. Le, and M. -C. Urdaci, A bacteriocin-like inhibitory substance produced by Bacillus coagulans I4., J. Appl. Microbiol., vol. 85, pp.42-50, (1998).

DOI: 10.1046/j.1365-2672.1998.00466.x

Google Scholar

[12] L. -C. Marrec, B. Hyronimus, P. Bressollier, B. Verneuil, and M. -C. Urdaci, Biochemical and genetic characterization of Coagulin, a new antilisterial bacteriocin in the pediocin family of bacteriocins, produced by Bacillus coagulans I4, ppl. Environ. Microbiol., vol. 66, pp.5213-5220, (2000).

DOI: 10.1128/aem.66.12.5213-5220.2000

Google Scholar

[13] T. Stein, Bacillus subtilis antibiotics: structures, syntheses and specific functions, Mol. Microbiol., vol. 56, pp.845-857, (2005).

DOI: 10.1111/j.1365-2958.2005.04587.x

Google Scholar

[14] M. Ongena, P. Jacques, Y. Touré, J. Destain, A. Jabrane, and P. Thonart, Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis, Appl. Microbiol. Biotechnol., vol. 69, pp.29-38, (2005).

DOI: 10.1007/s00253-005-1940-3

Google Scholar

[15] H. -P. Bais, R. Fall, and J. -M. Vivanco, Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production, Plant Physiol., vol. 134, pp.307-319, (2004).

DOI: 10.1104/pp.103.028712

Google Scholar