Breeding of Oleaginous Rhodotorula Glutinis and the Synthesis of Biodiesel

Article Preview

Abstract:

Biodiesel is a renewable, easily biodegradable energy. However, due to the rising cost of its raw materials such as vegetable oils, using of biodiesel is restricted. Microbial lipid has many advantages like short production cycle, high production efficiency, and low cost, can be used to provide cheap and ample raw materials for biodiesel production. In this study, Rhodotorula glutinis was treated with ultraviolet radiation to get mutants and then screened by spectrophotometry. RG-UV02 was identified as a high yield oleaginous strain and exhibited a good genetic stability. Optimal fermentation conditions were obtained as follows: 20% dissolved oxygen, 10% inoculum size, 100 g/L glucose and C/N ratio was 154. Under such conditions, dry biomass, lipid concentration and lipid content of RG-UV02 reached 11.583 g/L, 3.535 g/L and 30.51%,respectively, which raised by 10.77%, 36.86% and 23.52% than these before optimizing. Gas chromatography-mass spectroscopy analysis showed that the compositions of RG-UV02 lipid were similar to these of vegetable oils. Chemical modification improved the affinity of the porcine pancreatic lipase with the substrate. The enzyme activity recovery rate of immobilized chemical modification porcine pancreatic lipase was 47.90%. The calculation result showed that immobilized chemical modification porcine pancreatic lipase catalyzed 1g RG-UV02 lipid to synthesize 183.8 mg biodiesel, the yield rate of transesterification was 35.55%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

159-166

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. A. Basha, K. R. Gopal and S. Jebaraj, A review on biodiesel production, combustion, emissions and performance, Renewable and Sustainable Energy Reviews, vol. 13, 2009, pp.1628-1634.

DOI: 10.1016/j.rser.2008.09.031

Google Scholar

[2] Z. Helwani, M. R. Othman, N. Aziz, W. J. N. Fernando and J. Kim, Technologies for production of biodiesel focusing on green catalytic techniques: A review, Fuel Processing Technology,vol. 90, 2009, pp.1502-1514.

DOI: 10.1016/j.fuproc.2009.07.016

Google Scholar

[3] S. Raposo, J. Pardao and M. E. Lima-Costa, Oleaginous microorganisms as sustainable feedstock for biodiesel production, New Biotechnology, vol. 25, 2009, pp. S276-S276.

DOI: 10.1016/j.nbt.2009.06.623

Google Scholar

[4] P. D. Patil and S. G. Deng, Optimization of biodiesel production from edible and non-edible vegetable oils, Fuel, vol. 88, 2009, pp.1302-1306.

DOI: 10.1016/j.fuel.2009.01.016

Google Scholar

[5] A. A. Apostolakou, I. K. Kookos, C. Marazioti and K. C. Angelopoulos, Techno-economic analysis of a biodiesel production process from vegetable oils, Fuel Processing Technology. vol. 90, 2009, pp.1023-1031.

DOI: 10.1016/j.fuproc.2009.04.017

Google Scholar

[6] J. M. Dias, M. C. Ferraz and M. F. Almeida, Production of biodiesel from acid waste lard, Bioresource Technology , vol. 100, 2009, pp.6355-6361.

DOI: 10.1016/j.biortech.2009.07.025

Google Scholar

[7] S. D. Dyal and S. S. Narine, Implications for the use of Mortierella fungi in the industrial production of essential fatty acids, Food Research International, vol. 38, 2005, pp.445-467.

DOI: 10.1016/j.foodres.2004.11.002

Google Scholar

[8] T. Czabany, K. Athenstaedt and G. Daum, Synthesis, storage and degradation of neutral lipids in yeast, Biochimica et Biophysica Acta, vol. 1771, 2007, pp.299-309.

DOI: 10.1016/j.bbalip.2006.07.001

Google Scholar

[9] X. Meng, J. M. Yang, X. Xu, L. Zhang, Q. J. Nie, et al, Biodiesel production from oleaginous microorganisms, Renewable Energy, vol. 34, 2009, pp.1-5.

DOI: 10.1016/j.renene.2008.04.014

Google Scholar

[10] C. Ratledge, Fatty acid biosynthesis in microorganisms being used for single cell oil production, Biochimie, vol. 86, 2004, pp.807-815.

DOI: 10.1016/j.biochi.2004.09.017

Google Scholar

[11] G. Vicente, L. F. Bautista, R. Rodríguez, F. J. Gutierrez, I. Sadaba, et al, Biodiesel production from biomass of an oleaginous fungus, Biochemical Engineering Journal, vol. 48, 2009, pp.22-27.

DOI: 10.1016/j.bej.2009.07.014

Google Scholar

[12] L. Y. Zhu, M. H. Zong and H. Wu, Efficient lipid production with Trichosporon fermentans and its use for biodiesel preparation, Bioresource Technology, vol. 99, 2008, pp.7881-7885.

DOI: 10.1016/j.biortech.2008.02.033

Google Scholar

[13] R. Gaur, A. Gupta and S. K. Khare, Purification and characterization of lipase from solvent tolerant Pseudomonas aeruginosa PseA, Process Biochemistry, vol. 43, 2008, pp.1040-1046.

DOI: 10.1016/j.procbio.2008.05.007

Google Scholar

[14] G. Fernandez-Lorente , Z. Cabrera, C. Godoy, R. Fernandez-Lafuenta, J. M. Palomo, et al, Interfacially activated lipases against hydrophobic supports: Effect of the support nature on the biocatalytic properties, Process Biochemistry, vol. 43, 2008, pp.1061-1067.

DOI: 10.1016/j.procbio.2008.05.009

Google Scholar

[15] Y. J. Cai, L. Wang, X. R. Liao, Y. R. Ding and J. Sun, Purification and partial characterization of two new cold-adapted lipases from mesophilic Geotrichum sp SYBC WU-3, Process Biochemistry, vol. 44, 2009, pp.786-790.

DOI: 10.1016/j.procbio.2009.03.011

Google Scholar

[16] Y. Wang and L. H. Zhang, Ectoine improves yield of biodiesel catalyzed by immobilized lipase, Journal of Molecular Catalysis B-Enzymatic, vol. 62, 2010, pp.91-96.

DOI: 10.1016/j.molcatb.2009.09.014

Google Scholar

[17] S. Pahujani, S. S. Kanwar, G. Chauhan and R. Gupta, Glutaraldehyde activation of polymer Nylon-6 for lipase immobilization: Enzyme characteristics and stability, Bioresource Technology, vol. 99, 2008, pp.2566-2570.

DOI: 10.1016/j.biortech.2007.04.042

Google Scholar

[18] A. A. Tzialla, I. V. Pavlidis and M. P. Felicissimo, Lipase immobilization on smectite nanoclays: Characterization and application to the epoxidation of α-pinene, Bioresource Technology, vol. 101, 2010, pp.1587-1594.

DOI: 10.1016/j.biortech.2009.10.023

Google Scholar

[19] L. Y. Huang, X. Y. Zhao, Z. Q. Cai, J. H. Pei and F. F. Bi, Pretreatment of immobilized Candida antarctica lipase for biodiesel production from waste oil, China Oils and Fats, vol. 32, 2007, pp.47-50.

Google Scholar

[20] A. Macario, M. Moliner and U. Diaz, Biodiesel production by immobilized lipase on zeolites and related materials, Studies in Surface Science and Catalysis, vol. 174, 2008, pp.1011-1016.

DOI: 10.1016/s0167-2991(08)80061-4

Google Scholar

[21] N. Dizge and B. Keskinler, Enzymatic production of biodiesel from canola oil using immobilized lipase, Biomass and Bioenergy, vol. 32, 2008, pp.1274-1278.

DOI: 10.1016/j.biombioe.2008.03.005

Google Scholar

[22] P. Shao, X. H. Meng, J. Z. He and P. L. Sun, Analysis of immobilized Candida rugosa lipase catalyzed preparation of biodiesel from rapeseed soapstock, Food and Bioproducts Processing, vol. 86, 2008, pp.283-289.

DOI: 10.1016/j.fbp.2008.02.004

Google Scholar

[23] X. H. Liu, C. M. Liu, X. X. Gao and S. X. Wu, Preparation of Biodiesel from Waste Oil by Using Immobilized Lipase in An Organic Solvent System, Journal of the Chinese Cereals and Oils Association, vol. 24, 2009, pp.66-70.

Google Scholar

[24] N. W. Li, M. H. Zong and H. Wu, Highly efficient transformation of waste oil to biodiesel by immobilized lipase from Penicillium expansum, Process Biochemistry, vol. 44, 2009, pp.685-688.

DOI: 10.1016/j.procbio.2009.02.012

Google Scholar

[25] K. B. Liao, H. Y. Zeng and X. Deng, Optimized Process of Biodiesel on Immobilized Lipase Catalyst Assisted with Ultrasonic Radialization in Microaqueous Media, Natural Product Research and Development, vol. 21, 2009, pp.871-874.

Google Scholar

[26] J. K. Lu, L. Deng, R. Zhao, R. S. Zhang, F. Wang, et al, Pretreatment of immobilized Candida sp 99-125 lipase to improve its methanol tolerance for biodiesel production, Journal of Molecular Catalysis B-Enzymatic, vol. 62, 2010, pp.15-18.

DOI: 10.1016/j.molcatb.2009.08.002

Google Scholar

[27] M. S. Thakur, S. G. Prapulla and N. G. Karanth, Estimation of intracellular lipids by the measurement of absorbance of yeast cells stained with sudan black b, Enzyme Microb Technol, vol. 11, 1989, p.252–254.

DOI: 10.1016/0141-0229(89)90101-4

Google Scholar

[28] A. Kavadia, M. Komaitis, I. Chevalot, B. F. lanchard, I. Marc, et al, Lipid and gamma-linolenic acid accumulation in strains of Zygomycetes growing on glucose, J. Am. Oil Chem. Soc, vol. 78, 2001, p.341–346.

DOI: 10.1007/s11746-001-0266-3

Google Scholar

[29] E. G. Bligh and W. J. Dyer, A rapid method of total lipid extraction and purification, Biochem. Physiol, vol. 37, 1959, p.911–917.

DOI: 10.1139/o59-099

Google Scholar

[30] M. A. Somogy, A new reagent for determination of sugar. J, Biol. Chem, vol. 160, 1945, p.61–68.

Google Scholar

[31] M. R. Morrison and M. Smith, Preparation of fatty acid methyl esters and dimethyl acetals from lipids with boron trifluride–methanol. J, , Lipid Res, vol. 5, 1964, pp.600-608.

DOI: 10.1016/s0022-2275(20)40190-7

Google Scholar

[32] M. Stredansky, E. Conti, S. Stredanska and F. Zanetti, γ-Linolenic acid production with Thamnidium elegans by solid-state fermentation on apple pomace, Bioresource Technology, vol. 73, 2000, p.41–45.

DOI: 10.1016/s0960-8524(99)00132-7

Google Scholar

[33] Y. Z. Weng, H. L. Jiang and Y. J. Fang, Property of lipolase modified with stearic acid, Chemical Industry and Engineering Progress, vol. 26, 2007, pp.873-876.

Google Scholar

[34] T. Maruyama, M. Nakajima and S. Ichikawa, Structural study of lipase modified with fatty acid, Biochemical Engineering Journal, vol. 9, 2001, pp.185-191.

DOI: 10.1016/s1369-703x(01)00143-7

Google Scholar

[35] P. He, Z. L. Huang, G. H. Wu, Z. Z. Chu, Q. C. Shi, et al, Resolution of DL-phenylalanine by papain and immobilized papain, Chinese Journal of Biochemistry and Molecular Biology, vol. 25, 2009, pp.23-29.

Google Scholar