[1]
S. A. Basha, K. R. Gopal and S. Jebaraj, A review on biodiesel production, combustion, emissions and performance, Renewable and Sustainable Energy Reviews, vol. 13, 2009, pp.1628-1634.
DOI: 10.1016/j.rser.2008.09.031
Google Scholar
[2]
Z. Helwani, M. R. Othman, N. Aziz, W. J. N. Fernando and J. Kim, Technologies for production of biodiesel focusing on green catalytic techniques: A review, Fuel Processing Technology,vol. 90, 2009, pp.1502-1514.
DOI: 10.1016/j.fuproc.2009.07.016
Google Scholar
[3]
S. Raposo, J. Pardao and M. E. Lima-Costa, Oleaginous microorganisms as sustainable feedstock for biodiesel production, New Biotechnology, vol. 25, 2009, pp. S276-S276.
DOI: 10.1016/j.nbt.2009.06.623
Google Scholar
[4]
P. D. Patil and S. G. Deng, Optimization of biodiesel production from edible and non-edible vegetable oils, Fuel, vol. 88, 2009, pp.1302-1306.
DOI: 10.1016/j.fuel.2009.01.016
Google Scholar
[5]
A. A. Apostolakou, I. K. Kookos, C. Marazioti and K. C. Angelopoulos, Techno-economic analysis of a biodiesel production process from vegetable oils, Fuel Processing Technology. vol. 90, 2009, pp.1023-1031.
DOI: 10.1016/j.fuproc.2009.04.017
Google Scholar
[6]
J. M. Dias, M. C. Ferraz and M. F. Almeida, Production of biodiesel from acid waste lard, Bioresource Technology , vol. 100, 2009, pp.6355-6361.
DOI: 10.1016/j.biortech.2009.07.025
Google Scholar
[7]
S. D. Dyal and S. S. Narine, Implications for the use of Mortierella fungi in the industrial production of essential fatty acids, Food Research International, vol. 38, 2005, pp.445-467.
DOI: 10.1016/j.foodres.2004.11.002
Google Scholar
[8]
T. Czabany, K. Athenstaedt and G. Daum, Synthesis, storage and degradation of neutral lipids in yeast, Biochimica et Biophysica Acta, vol. 1771, 2007, pp.299-309.
DOI: 10.1016/j.bbalip.2006.07.001
Google Scholar
[9]
X. Meng, J. M. Yang, X. Xu, L. Zhang, Q. J. Nie, et al, Biodiesel production from oleaginous microorganisms, Renewable Energy, vol. 34, 2009, pp.1-5.
DOI: 10.1016/j.renene.2008.04.014
Google Scholar
[10]
C. Ratledge, Fatty acid biosynthesis in microorganisms being used for single cell oil production, Biochimie, vol. 86, 2004, pp.807-815.
DOI: 10.1016/j.biochi.2004.09.017
Google Scholar
[11]
G. Vicente, L. F. Bautista, R. Rodríguez, F. J. Gutierrez, I. Sadaba, et al, Biodiesel production from biomass of an oleaginous fungus, Biochemical Engineering Journal, vol. 48, 2009, pp.22-27.
DOI: 10.1016/j.bej.2009.07.014
Google Scholar
[12]
L. Y. Zhu, M. H. Zong and H. Wu, Efficient lipid production with Trichosporon fermentans and its use for biodiesel preparation, Bioresource Technology, vol. 99, 2008, pp.7881-7885.
DOI: 10.1016/j.biortech.2008.02.033
Google Scholar
[13]
R. Gaur, A. Gupta and S. K. Khare, Purification and characterization of lipase from solvent tolerant Pseudomonas aeruginosa PseA, Process Biochemistry, vol. 43, 2008, pp.1040-1046.
DOI: 10.1016/j.procbio.2008.05.007
Google Scholar
[14]
G. Fernandez-Lorente , Z. Cabrera, C. Godoy, R. Fernandez-Lafuenta, J. M. Palomo, et al, Interfacially activated lipases against hydrophobic supports: Effect of the support nature on the biocatalytic properties, Process Biochemistry, vol. 43, 2008, pp.1061-1067.
DOI: 10.1016/j.procbio.2008.05.009
Google Scholar
[15]
Y. J. Cai, L. Wang, X. R. Liao, Y. R. Ding and J. Sun, Purification and partial characterization of two new cold-adapted lipases from mesophilic Geotrichum sp SYBC WU-3, Process Biochemistry, vol. 44, 2009, pp.786-790.
DOI: 10.1016/j.procbio.2009.03.011
Google Scholar
[16]
Y. Wang and L. H. Zhang, Ectoine improves yield of biodiesel catalyzed by immobilized lipase, Journal of Molecular Catalysis B-Enzymatic, vol. 62, 2010, pp.91-96.
DOI: 10.1016/j.molcatb.2009.09.014
Google Scholar
[17]
S. Pahujani, S. S. Kanwar, G. Chauhan and R. Gupta, Glutaraldehyde activation of polymer Nylon-6 for lipase immobilization: Enzyme characteristics and stability, Bioresource Technology, vol. 99, 2008, pp.2566-2570.
DOI: 10.1016/j.biortech.2007.04.042
Google Scholar
[18]
A. A. Tzialla, I. V. Pavlidis and M. P. Felicissimo, Lipase immobilization on smectite nanoclays: Characterization and application to the epoxidation of α-pinene, Bioresource Technology, vol. 101, 2010, pp.1587-1594.
DOI: 10.1016/j.biortech.2009.10.023
Google Scholar
[19]
L. Y. Huang, X. Y. Zhao, Z. Q. Cai, J. H. Pei and F. F. Bi, Pretreatment of immobilized Candida antarctica lipase for biodiesel production from waste oil, China Oils and Fats, vol. 32, 2007, pp.47-50.
Google Scholar
[20]
A. Macario, M. Moliner and U. Diaz, Biodiesel production by immobilized lipase on zeolites and related materials, Studies in Surface Science and Catalysis, vol. 174, 2008, pp.1011-1016.
DOI: 10.1016/s0167-2991(08)80061-4
Google Scholar
[21]
N. Dizge and B. Keskinler, Enzymatic production of biodiesel from canola oil using immobilized lipase, Biomass and Bioenergy, vol. 32, 2008, pp.1274-1278.
DOI: 10.1016/j.biombioe.2008.03.005
Google Scholar
[22]
P. Shao, X. H. Meng, J. Z. He and P. L. Sun, Analysis of immobilized Candida rugosa lipase catalyzed preparation of biodiesel from rapeseed soapstock, Food and Bioproducts Processing, vol. 86, 2008, pp.283-289.
DOI: 10.1016/j.fbp.2008.02.004
Google Scholar
[23]
X. H. Liu, C. M. Liu, X. X. Gao and S. X. Wu, Preparation of Biodiesel from Waste Oil by Using Immobilized Lipase in An Organic Solvent System, Journal of the Chinese Cereals and Oils Association, vol. 24, 2009, pp.66-70.
Google Scholar
[24]
N. W. Li, M. H. Zong and H. Wu, Highly efficient transformation of waste oil to biodiesel by immobilized lipase from Penicillium expansum, Process Biochemistry, vol. 44, 2009, pp.685-688.
DOI: 10.1016/j.procbio.2009.02.012
Google Scholar
[25]
K. B. Liao, H. Y. Zeng and X. Deng, Optimized Process of Biodiesel on Immobilized Lipase Catalyst Assisted with Ultrasonic Radialization in Microaqueous Media, Natural Product Research and Development, vol. 21, 2009, pp.871-874.
Google Scholar
[26]
J. K. Lu, L. Deng, R. Zhao, R. S. Zhang, F. Wang, et al, Pretreatment of immobilized Candida sp 99-125 lipase to improve its methanol tolerance for biodiesel production, Journal of Molecular Catalysis B-Enzymatic, vol. 62, 2010, pp.15-18.
DOI: 10.1016/j.molcatb.2009.08.002
Google Scholar
[27]
M. S. Thakur, S. G. Prapulla and N. G. Karanth, Estimation of intracellular lipids by the measurement of absorbance of yeast cells stained with sudan black b, Enzyme Microb Technol, vol. 11, 1989, p.252–254.
DOI: 10.1016/0141-0229(89)90101-4
Google Scholar
[28]
A. Kavadia, M. Komaitis, I. Chevalot, B. F. lanchard, I. Marc, et al, Lipid and gamma-linolenic acid accumulation in strains of Zygomycetes growing on glucose, J. Am. Oil Chem. Soc, vol. 78, 2001, p.341–346.
DOI: 10.1007/s11746-001-0266-3
Google Scholar
[29]
E. G. Bligh and W. J. Dyer, A rapid method of total lipid extraction and purification, Biochem. Physiol, vol. 37, 1959, p.911–917.
DOI: 10.1139/o59-099
Google Scholar
[30]
M. A. Somogy, A new reagent for determination of sugar. J, Biol. Chem, vol. 160, 1945, p.61–68.
Google Scholar
[31]
M. R. Morrison and M. Smith, Preparation of fatty acid methyl esters and dimethyl acetals from lipids with boron trifluride–methanol. J, , Lipid Res, vol. 5, 1964, pp.600-608.
DOI: 10.1016/s0022-2275(20)40190-7
Google Scholar
[32]
M. Stredansky, E. Conti, S. Stredanska and F. Zanetti, γ-Linolenic acid production with Thamnidium elegans by solid-state fermentation on apple pomace, Bioresource Technology, vol. 73, 2000, p.41–45.
DOI: 10.1016/s0960-8524(99)00132-7
Google Scholar
[33]
Y. Z. Weng, H. L. Jiang and Y. J. Fang, Property of lipolase modified with stearic acid, Chemical Industry and Engineering Progress, vol. 26, 2007, pp.873-876.
Google Scholar
[34]
T. Maruyama, M. Nakajima and S. Ichikawa, Structural study of lipase modified with fatty acid, Biochemical Engineering Journal, vol. 9, 2001, pp.185-191.
DOI: 10.1016/s1369-703x(01)00143-7
Google Scholar
[35]
P. He, Z. L. Huang, G. H. Wu, Z. Z. Chu, Q. C. Shi, et al, Resolution of DL-phenylalanine by papain and immobilized papain, Chinese Journal of Biochemistry and Molecular Biology, vol. 25, 2009, pp.23-29.
Google Scholar