A Microfluidic Platform for Multi-Antigen Immunofluorescence Assays

Article Preview

Abstract:

Traditional cell-based assays such as cell immunoassay that utilizes plastic (chamber slides, dishes, microtiter plates), Magnetic bead, enzyme-linked immunsorbent assays (ELISA) [1], FACS cell sorting is labor intensive, time consuming, and requires a large numbers of cells or reagents. In this report, a microfluidic device integrated with cell culture, washing, fixation, and antigen-antibody reaction is presented for high-throughput immunoassay. Using this microfluidic device, each assay can be performed on a small number of cells and nanolitre or picolitre of reagents, this is particularly beneficial for rare or expensive cell types such as stem cells, or flow sorted cell populations. The capability of the microfluidic device was demonstrated for seeding human umbilical cord blood mesenchymal stem cells (UC-MSCs) in chambers and detecting the expression of surface markers (CD34, CD44, CD45, CD73, CD105, HLA-DR) by immunofluorescence assay.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

200-205

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Krämer, M. Petra, Weber, Optical Immunosensor and ELISA for the Analysis of Pyrethroids and DDT in Environmental Samples, Rational Environmental Management of Agrochemicals. September 21, 2007, pp.186-202.

DOI: 10.1021/bk-2007-0966.ch012

Google Scholar

[2] Hufnagel, A. Huebner, C. Gülch, K. Güse, C. Abell, F. Hollfelder, An integrated cell culture lab on a chip: modular microdevices for cultivation of mammalian cells and delivery into microfluidic microdroplets, Lab. Chip. 9, 2009, pp.1576-1582.

DOI: 10.1039/b821695a

Google Scholar

[3] D. G. Anderson, S. Levenberg, R. Langer, Nanoliter-scale synthesis ofarrayed biomaterials and application to human embryonic stem cells, Nat Biotechnology, 22(7), 2004, p.863–866.

DOI: 10.1038/nbt981

Google Scholar

[4] P. J. Hung, P. Sabounchi, R. Lin, L. P. Lee, Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays, Biotechnol. Bioeng. , 89, 2005, pp.1-8.

DOI: 10.1002/bit.20289

Google Scholar

[5] Z. H. Wang, M. C. Kim, M. Marquez and T. Thorsen, High-density microfluidic arrays for cell cytotoxicity analysis, Lab Chip, vol. 7, 2007, p.740–745.

DOI: 10.1039/b618734j

Google Scholar

[6] Bo Ma, Guohao Zhang, Jianhua Qin and Bingcheng Lin, Characterization of drug metabolites and cytotoxicity assay simultaneously using an integrated microfluidic device, Lab Chip, vol. 9, 2009, p.232–238.

DOI: 10.1039/b809117j

Google Scholar

[7] M. E. Nuttall, A. J. Patton, D. L. Olivera, D. P. Nadeau, Human trabecular bone cells are able to express both osteoblastic and adipocytic phenotype: implications for osteopenic disorders, J. Bone Miner. Res., 13, 1998, pp.371-382.

DOI: 10.1359/jbmr.1998.13.3.371

Google Scholar

[8] A. X. Zhang, W. H. Yu, B. F. Ma, Proteomic identification of differently expressed proteins responsible for osteoblast differentiation from human mesenchymal stem cells, Mol. Cell. Biochem., 304, 2007, p.167–179.

DOI: 10.1007/s11010-007-9497-3

Google Scholar

[9] B. Johnstone, T. M. Hering, A. I. Caplan, V. M. Goldberg, J. U. Yoo, In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells, Exp. Cell Res., 238, 1998, pp.265-272.

DOI: 10.1006/excr.1997.3858

Google Scholar

[10] H. Hachisuka, Y. Mochizuki, Y. Yasunaga, Flow cytometric discrimination of mesenchymal progenitor cells from bone marrow-adherent cell populations using CD34/44/45(-) and Sca-1(+) markers., vol. 12, 2007, pp.161-169.

DOI: 10.1007/s00776-006-1098-6

Google Scholar

[11] F. P. Barry, R. E. Boynton, S. Haynesworth, J. M. Murphy, J. Zaia, The monoclonal antibody SH-2, raised against human mesenchymal stem cells, recognizes an epitope on endoglin (CD105), Biochem Biophys Res Commun, 265, 1999, pp.134-139.

DOI: 10.1006/bbrc.1999.1620

Google Scholar

[12] F. Barry, R. Boynton, M. Murphy, J. Zaia, The SH-3 and SH-4 antibodies recognize distinct epitopes on CD73 from human mesenchymal stem cells, Biochemical and Biophysical Research Communications, 289, 2001, pp.519-524.

DOI: 10.1006/bbrc.2001.6013

Google Scholar

[13] X. M. Zhao, Y. N. Xia, G. M. Whitesides, Soft lithographic methods for nano-fabrication, J. Mater. Chem., 7, 1997, pp.1069-1074.

DOI: 10.1039/a700145b

Google Scholar

[14] S. R. Liu, Q. S, Pu, J. J. Lu, Electric field-decoupled electroosmotic pump for microfluidic devices, J. Chromatogr. A, 1013, 2003, p.57–64.

DOI: 10.1016/s0021-9673(03)00941-5

Google Scholar