Transcriptional Distribution in Various Organs and Transcriptional Response to Abiotic Stress for Trehalose Metabolism Genes in Arabidopsis Thaliana

Article Preview

Abstract:

Trehalose (α-D-glucopyranosyl-1,1-α-D-glucopyranoside) is a non-reducing disaccharide. It is currently thought that just trace level of trehalose was detected in plants, and that trehalose metabolic pathway was significantly related to stress tolerance. In this study, we report that expression levels of three genes with regard to trehalose metabolic pathway were measured in Arabidopsis thaliana, including AtTPS1, AtTPPA and AtTRE1. As a result, transcriptional levels of these genes are the highest in floral organ, and the expression of AtTRE1 is much more than AtTPS1 and AtTPPA. Additionally, we present transcriptional response analyses in drought and heat stresses, which have shown the changes of these genes expression from tolerance in early stress to senescence in later stress.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

251-256

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] O. J. M. Goddijn and K. van Dun, Trehalose metabolism in plants, Trends in Plant Science, Vol. 4, pp.315-319, August (1999).

DOI: 10.1016/s1360-1385(99)01446-6

Google Scholar

[2] A. D. Elbein, Y. T. Pan, I. Pastuszak, and D. Carroll, New insights on trehalose: a multifuntional molecule, Glycobiol, vol. 13, pp. 17R–27R, (2003).

Google Scholar

[3] M. J. Ribeiro, A. Reinders, T. Boller, A. Wiemken, C. M. De Virgilio, Trehalose synthesis is important for the acquisition of thermotolerance in Schizosaccharomyces pombe, Mol Microbiol, Vol. 25(3), pp.571-81, August (1997).

DOI: 10.1046/j.1365-2958.1997.4961856.x

Google Scholar

[4] J. Müller, R. A. Aeschbacher, A. Wingler, T. Boller, and A. Wiemken, Trehalose and Trehalase in Arabidopsis, Plant Physiol. Vol. 125, pp.1086-1093, February (2001).

DOI: 10.1104/pp.125.2.1086

Google Scholar

[5] N. Avonce, A. Mendoza-Vargas, E. Morett, and G. Iturriaga, Insights on the evolution of trehalose biosynthesis, BMC Evol Biol. 6: 109, December (2006).

DOI: 10.1186/1471-2148-6-109

Google Scholar

[6] M. A. Blázquez, E. Santos, C. L Flores, J. M. Martínez-Zapater, J. Salinas, and C. Gancedo, Isolation and molecular characterization of the Arabidopsis TPS1 gene, encoding trehalose-6-phosphate synthase, The Plant J. Vol. 13, Issue 5, p.685–689, March (1998).

DOI: 10.1046/j.1365-313x.1998.00063.x

Google Scholar

[7] K.O. Holmström, E. Mäntylä, B. Welin, A. Mandal, E. T. Palva, et al. Drought tolerance in tobacco, Nature. 379, pp.683-684, February (1996).

DOI: 10.1038/379683a0

Google Scholar

[8] J. Müller, C. Staehelin, R. B. Mellor, T. Boller, and A. Wiemken, Partial purification and characterization of trehalase from soybean nodules, Journal of Plant Physiology. Vol. 140 (1), pp.8-13. (1992).

DOI: 10.1016/s0176-1617(11)81048-5

Google Scholar

[9] J. Müller, T. Boller, and A. Wiemken, Trehalose and trehalase in plants: recent developments, Plant Science. Vol. 112, pp.1-9, November (1995).

DOI: 10.1016/0168-9452(95)04218-j

Google Scholar

[10] B. Leyman, P. V. Dijck and J. M. Thevelein, An unexpected plethora of trehalose biosynthesis genes in Arabidopsis thaliana, Trends in Plant Science. Vol. 6, Issue 11, pp.510-513, November (2001).

DOI: 10.1016/s1360-1385(01)02125-2

Google Scholar