Cloning and Characterization of a Carotenoid Cleavage Dioxygenase from Artemisia Annua L

Article Preview

Abstract:

In order to discover the formation mechanism of carotenoid derived aroma, which has been wildly used on protection of crop against insect attacks, the full-length cDNA of an Artemisia annua carotenoid cleavage dioxygenase (AaCCD1) was cloned by rapid amplification of cDNA ends. The function of AaCCD1 was characterized by expression of AaCCD1 in a strain of E. coli accumulating carotenoids and enzyme assay in vitro. The completed open read frame of AaCCD1 was 1629 bp and it encoded a 542-amino acid protein with a 77% amino acid identity to Arabidopsis thaliana CCD1, a predicted molecular mass of 61.04 kDa and a pI of 5.8. AaCCD1 efficiently cleaves carotenoids and regulate the formation of terpenoid compounds. This is the first time to report the cloning and identification of carotenoid cleavage dioxygenase from Atemisia annua, which will play a great role on understanding the regulation of volatile compounds.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

274-281

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Liu, N. Tian, Z. Liu, J. Huang, J. Li and J. F.S. Ferreira. Affordable and sensitive determination of artemisinin in Artemisia annua L. by gas chromatography with electron-capture detection. Journal of Chromatography A. 2008 (1190): 302–306.

DOI: 10.1016/j.chroma.2008.02.089

Google Scholar

[2] S. Aquil, A. Husaini, M. Abdin and G. Rather. Overexpression of the HMG-CoA reductase gene leads to enhanced artemisinin biosynthesis in transgenic Artemisia annua plants. Planta Med. 2009, 75(13): 1453-8.

DOI: 10.1055/s-0029-1185775

Google Scholar

[3] M. Auldridge, A. Block, J. Vogel, C. Dabney-Smith and I. Mila,. Characterization of three members of the Arabidopsis carotenoid cleavage dioxygenase family demonstrates the divergent roles of this multifunctional enzyme family. Plant J. 2006, 45: 982–993.

DOI: 10.1111/j.1365-313x.2006.02666.x

Google Scholar

[4] F. Bouvier, C. Suire, J. Mutterer and B. Camara. Oxidative remodeling of chromoplast carotenoids: identiWcation of the carotenoid dioxygenase CsCCD and CsZCD genes involved in Crocus secondary metabolite biogenesis. 2003, Plant Cell 15: 47–62.

DOI: 10.1105/tpc.006536

Google Scholar

[5] A.J. Simkin, S.H. Schwartz, M. Auldridge, M.G. Taylor and M.G. Klee. The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles β-ionone, pseudoionone, and geranylacetone. Plant J. 2004, 40: 882–892.

DOI: 10.1111/j.1365-313x.2004.02263.x

Google Scholar

[6] A.J. Simkin, B.A. Underwood, M. Auldridge, H.M. Loucas, K. Shibuya, E. Schmelz, D.G. Clark and H.J. Klee. Circadian regulation of the PhCCD1 carotenoid cleavage dioxygenase controls emission of β-ionone, a fragrance volatile of petunia flowers. Plant Physiol. 2004, 136: 3504–3514.

DOI: 10.1104/pp.104.049718

Google Scholar

[7] Z. Sun, J. Hans, M. Walter and R. Matusova. Cloning and characterisation of a maize carotenoid cleavage dioxygenase (ZmCCD1) and its involvement in the biosynthesis of apocarotenoids with various roles in mutualistic and parasitic interactions. Planta. 2008, 228: 789–801.

DOI: 10.1007/s00425-008-0781-6

Google Scholar

[8] R. Matusova, K. Rani, F.W. Verstappen, M.C. Franssen, M.H. Beale and H.J. Bouwmeester. The strigolactone germination stimulants of the plant–parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol. 2005, 139: 920–934.

DOI: 10.1104/pp.105.061382

Google Scholar

[9] M. Ibdah, Y. Azulay, V. Portnoy, B. Wasserman, E. Bar, A . Meir, Y. Burger, J. Hirschberg, A.A. SchaVer, N. Katzir, Y. Tadmor and E. Lewinsohn. Functional characterization of CmCCD1, a carotenoid cleavage dioxygenase from melon. Phytochemistry. 2006. 67: 1579–1589.

DOI: 10.1016/j.phytochem.2006.02.009

Google Scholar

[10] A.J. Simkin, S.H. Schwartz, M. Auldridge, M.G. Taylor and H. J. Klee. The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles β-ionone, pseudoionone, and geranylacetone. The Plant Journal. 2004, (40): 882–892.

DOI: 10.1111/j.1365-313x.2004.02263.x

Google Scholar

[11] S. Liu, N. Tian, J. Li, J. Huang and Z. Liu. Isolation and identification of novel genes involved in artemisinin production from flowers of Artemisia annua using suppression subtractive hybridization and metabolite analysis. Planta Med. 2009 . 75(14): 1542-7.

DOI: 10.1055/s-0029-1185809

Google Scholar

[12] F. Cunningham, Z. Sun, D. Chamovitz, J. Hirschberg and E. Gantt. Molecular structure and enzymatic function of lycopene cyclase from the cyanobacterium Synechococcus sp. Strain PCC7942. Plant Cell, 1994, 6, 1107–1121.

DOI: 10.1105/tpc.6.8.1107

Google Scholar

[13] F. Cunningham, B. Pogson, Z. Sun, K.A. McDonald, D. DellaPenna, E. Gantt. Functional analysis of the α- and β-lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation. Plant Cell, 1996, 8: 1613–1626.

DOI: 10.1105/tpc.8.9.1613

Google Scholar

[14] Z.R. Sun, E. Gantt and F. Cunningham. Cloning and functional analysis of the b-carotene hydroxylase of Arabidopsis thaliana. J. Biol. Chem. 1996. 271, 24349–24352.

DOI: 10.1074/jbc.271.40.24349

Google Scholar

[15] J. Gershenzon and N. Dudareva. The function of terpene natural products in the natural world. Nature Chemical Biology 3, 2007. 408-414.

DOI: 10.1038/nchembio.2007.5

Google Scholar