[1]
Liu ZC. A preliminary study of the biology of lichee stink bug, Tessaratoma Papillosa Drury, and its control. Journal of Plant Protection, 1965, 4(4): 329-339.
Google Scholar
[2]
Lin CS, Chiu SF. Experiments on the chemosterilization of the lychee stink bug, Tessaratoma Papillosa Drury. Acta Entomologica Sinica, 1983, 26(4): 379-385.
Google Scholar
[3]
Zhan ZX, Wang CF, Lu XS, et al. A preliminory study of the biology of lichee stink bug, Tessaratoma papillosa Drury, and its control. Journal of Plant Protection, 1965, 4(4): 329-339.
Google Scholar
[4]
Zhao SH, Chen GB, Huang ZX, et al. Field experiments on the control of the lichee stinkbug (Tessaratoma papillosa Drury) with dipterex. Journal of Plant Protection, 1964, 3(2): 123-130.
Google Scholar
[5]
Huang MD, Mai XH, Wu WN, et al. The bionomics of Anastatus sp. and its utilization for the control of lichee stink bug, Tessaratoma papillosa Drury. Acta Entomologica Sinica, 1974, 17(4): 362-372.
Google Scholar
[6]
Liu JF, Liu ZC, Wang CX, et al. Research on mass-rearing Anastatus sp. to against litchi sting bug. Natural Enemies of Insects, 1995, 17(4): 177-178.
Google Scholar
[7]
Reigosa M and Pedrol N. Allelopathy from molecules to ecosystems. Science Publishers, Inc. 2002: 153-230.
Google Scholar
[8]
Yang ZF, Lu ZX, Shentu GR, et al. A demonstration on the utility of pheromone trap for pink bollworm forecast. Journal of Plant Protection, 1990, 17(3): 215-217.
Google Scholar
[9]
Pimm SL, Russel GJ, Gittleman JL, et al. The future of biodiversity. Science, 1995, 269(5222): 347-350.
DOI: 10.1126/science.269.5222.347
Google Scholar
[10]
Chi GL, Xu T, Wang JW. Roles of infochemicals in host-selection process of Anastatus japonicus. Chinese Journal of Applied Ecology, 2007, 18(4): 865-870.
Google Scholar
[11]
Chi GL, Xu T, Wang JW. The effects of learning experiences of Anastatus japonicus on its host selection process. Acta Ecologica Sinica, 2007, 27(4): 1524-1529.
Google Scholar
[12]
Wang JW, Zhou Q, Xu T, et al. Roles of volatile infochemicals and learning behavior in the host selection process of Anastatus japonicus. Acta Ecologica Sinica, 2003, 23(9): 1791-1797.
Google Scholar
[13]
Tao SX, Wan FH, Tong ZH, et al. Allelochemicals for egg parasitoids, Trichogramma chilonis and T. dendrolimi: resources and activity bioassay. Scientia Agricultura Sinica, 2000, 33(6): 59-66.
Google Scholar
[14]
Hao DJ, Ma FL, Wang Y, et al. Electroantennogram and behavioral responses of Monochamus alternatus to volatiles from Pinus massoniana. Chinese Bulletin of Entomology, 2007, 44(4): 541-544.
Google Scholar
[15]
Baker R, Borges M, Cooke NG, et al. Identification and synthesis of (Z)-(1'S, 3'R, 4'S)(-)-2-(3', 4'-epoxy-4'methylcycloexyl)-6-methylhepta-2, 5-diene, the sex pheromone of the southern stinkbug, Nezara viridula (L. ). Journal of the Chemical Society, Chemical Communications, 1987: 414-416.
DOI: 10.1039/c39870000414
Google Scholar
[16]
Aldrich JR, Hoffman MP, Kochansky JP, et al. Identification and attractiveness of a major pheromone component for nearctic Euschistus spp. stink bugs (Heteroptera, Pentatomidae). Environmental entomology, 1991, 20(2): 477-483.
DOI: 10.1093/ee/20.2.477
Google Scholar
[17]
Aldrich JR, Oliver JE, Lusby WR, et al. Identification of male-specific volatiles from neartic and neotropical stink bugs (Heteroptera: Pentatomidae). Journal of Chemical Ecology, 1994, 20(5): 1103-1111.
DOI: 10.1007/bf02059746
Google Scholar
[18]
Brézot P, Malosse C, Mori K, et al. Bisabolene epoxides in sex pheromone in Nezara viridula (L. ) (Heteroptera: Pentatomidae): Role of cis isomer and relation to specificity of pheromone. Journal of Chemical Ecology, 1994, 20(12): 3133-3147.
DOI: 10.1007/bf02033716
Google Scholar
[19]
James DG, Mori K, Aldrich JR, et al. Flight-mediated attraction of Biprorulus bibax Breddin (Hemiptera: Pentatomidae) to natural and synthetic aggregation pheromone. Journal of Chemical Ecology, 1994, 20(1): 71-80.
DOI: 10.1007/bf02065991
Google Scholar
[20]
Sugie H, Yoshida M, Kawasaki K, et al. Identification of the aggregation pheromone of the brown-winged green bug, Plautia stali Scott (Heteroptera: Pentatomidae). Applied Entomology and Zoology, 1996, 31(3): 427-431.
DOI: 10.1303/aez.31.427
Google Scholar
[21]
Millar JG. Methyl (2E, 4Z, 6Z)-deca-2, 4, 6-trienoate, a thermally unstable, sex-specific compound from the stink bug Thyanta pallidovirens. Tetrahedron Letters, 1997, 38(46): 7971-7972.
DOI: 10.1016/s0040-4039(97)10142-3
Google Scholar
[22]
Borges M, Schmidt FGV, Sujii ER, et al. Field response of stink bugs to the natural and synthetic pheromone of the Neotropical brown stink bug, Euschistus heros (Heteroptera: Pentatomidae). Physiological Entomology, 1998, 23(3): 202-207.
DOI: 10.1046/j.1365-3032.1998.233086.x
Google Scholar
[23]
Ho HY, Millar JG. Compounds in metathoracic glands of adults and dorsal abdominal glands of nymphs of the stink bugs, Chlorochroa uhleri, C. sayi, and C. ligata (Hemiptera: Pentatomidae). Zoological Studies, 2001, 40(3): 193-198.
DOI: 10.1603/ec10095
Google Scholar
[24]
Mcbrien HL, Millar JG, Rice RE, et al. Sex attractant pheromone of the redshouldered stink bug Thyanta pallidovirens: a pheromone blend with multiple redundant components. Journal of Chemical Ecology, 2002, 28(9): 1797-1818.
Google Scholar
[25]
Moraes MCB, Millar JG, Laumann RA, et al. Sex attractant pheromone from the neotropical red-shouldered stink bug, Thyanta perditor (F. ). Journal of Chemical Ecology, 2005, 31(6): 1415-1427.
DOI: 10.1007/s10886-005-5294-1
Google Scholar
[26]
Zahn DK, Moreira JA, Millar JG. Identification, synthesis, and bioassays of a male-specific aggregation pheromone from the Harlequin bug, Murgantia histrionica. Journal of Chemical Ecology, 2008, 34(2): 238-251.
DOI: 10.1007/s10886-007-9415-x
Google Scholar
[27]
Leal WS, Ueda Y, Ono M. Attractant pheromone for male rice bug, Leptocorisa chinensis: semiochemicals produced by both male and female. Journal of Chemical Ecology, 1996, 22(8): 1429-1437.
DOI: 10.1007/bf02027722
Google Scholar
[28]
Marques FDM, Mcelfresh JS, Millar JG. Female-produced sex pheromone of the predatory bug Geocoris punctipes. Journal of Chemical Ecology, 2000, 26(12): 2843-2855.
Google Scholar
[29]
Guarino S, Pasquale CD, Peri E, et al. Role of volatile and contact pheromones in the mating behavior of Bagrada hilaris (Heteroptera: Pentatomidae). European Journal of Entomology, 2008, 105: 613-617.
DOI: 10.14411/eje.2008.082
Google Scholar
[30]
Roth S, Janssen A, Sabelis MW. Odour-mediated sexual attraction in nabids (Heteroptera: Nabidae). European Journal of Entomology, 2008, 105(1): 159-162.
DOI: 10.14411/eje.2008.022
Google Scholar
[31]
Zarbin HGP, Borges M, Santos AA, et al. Alarm pheromone system of stink bug Piezodorus guildinii (Heteroptera: Pentatomidae). Journal of the Brazilian Chemical Society, 2000, 11(4): 424-428.
DOI: 10.1590/s0103-50532000000400017
Google Scholar
[32]
Wang YJ, Zhao DX, Lu FP, et al. Electroantennogram and behavioral responses of Tessaratoma papillosa (Drury) (Hemiptera: Pentatomidea) to components of its metathoracic gland secretions. Acta Ecologica Sinica, 2009, 29(11): 5807-5812.
Google Scholar
[33]
Remold H. Über die biologische Bedeutung der Duftdrüsen bei den Landwanzen (Geocorisae). Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology, 1962, 45(6): 636-694.
DOI: 10.1007/bf00298174
Google Scholar
[34]
Gunawardena NE, Herath H. Significance of medium chain n-alkanes as accompanying compounds in hemipteran defensive secretion of Coridius janus. Journal of Chemical Ecology, 1991, 17(12): 2449-2458.
DOI: 10.1007/bf00994593
Google Scholar
[35]
Yasuda T, Mizutani N, Endo N, et al. A new component of attractive aggregation pheromone in the bean bug, Riptortus clavatus (Thunberg) (Heteroptera: Alydidae). Applied Entomology and Zoology, 2007, 42(1): 1-7.
DOI: 10.1303/aez.2007.1
Google Scholar
[36]
Byers JA. Production and predator-induced release of volatile chemicals by the plant bug Lygus Hesperus. Journal of Chemical Ecology, 2006, 32(10): 2205-2218. Table 1 EAG responses of adult T. papillosa to extracts of its body surfaces Experimental bug EAG response(mV) ♀ ♂ n-hexane ether n-hexane ether ♀.
DOI: 10.1007/s10886-006-9140-x
Google Scholar
28±0. 03ABab.
Google Scholar
13±0. 01Bb ♂.
Google Scholar
42±0. 04Aab Notes:Data in the table are mean ±SE. Values followed by different small letters in the same row are significantly different at 0. 01 level, and different capital letters are significantly different at 0. 05 level Table 2 Retention time and relative amount of components in body surfaces of adult T. papillosa Component Retention time (min) Relative amount (%) Hexane extracts Ether extracts ♂ ♀ ♂ ♀ (Z)-2, 2-Dimethyl-3-hexene.
DOI: 10.7717/peerj.5130/table-4
Google Scholar
[8]
81 - Dodecane.
Google Scholar
[3]
45 Tridecane.
Google Scholar
[82]
92 2-Hexen-1-ol, acetate.
Google Scholar
[3]
85 - - Undecane.
Google Scholar
23 - Propyl-cyclohexane.
Google Scholar
27 - (E)-2-Hexen-1-ol, acetate.
Google Scholar
[5]
40 2, 3, 3-Trimethyl-1-butene.
Google Scholar
60 - cis-1-Methyl-2-ethylcyclopentane.
Google Scholar
77 - trans-2-Hexenal diethyl acetal.
Google Scholar
[1]
64 - Lomustine.
Google Scholar
24 3-Ethyl-3-hexene.
Google Scholar
[4]
84 2, 5-Dihydro-2, 5-dimethyl-furan.
Google Scholar
[1]
74 7-Oxabicyclo[4. 1. 0]heptane.
Google Scholar
63 1-Tridecene.
Google Scholar