Study on Microstructure and Mechanical Properties of Epoxy Resin/Carbon Black Composites Prepared by in Situ Polymerization

Article Preview

Abstract:

Microstructure and mechanical properties of epoxy resin/carbon black composites synthesized by in situ condensation polymerization of monomers in the presence of carbon black particles were investigated. SEM observation showed that carbon black particles were well dispersed in the epoxy resin matrix. The composite with 1 wt. % carbon black had the electrical resistivity of approximately 108.7 Ω•cm. The composites exhibited an a percolation threshold at carbon black content about 4 wt.%, indicating the existence of a path of percolation by connecting carbon black particles. Bending strength dramatically increased to a maximum value of 133.4MPa and then slowly decreased with content of carbon black increasing. Shore hardness increased gradually with content of carbon black and came to 23.3HD at carbon black 10 wt.%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

156-160

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ye. P. Mamunya, V. V. Davydenko, P. Pissis, E. V. Lebedev, Electrical and thermal conductivity of polymers filled with metal powders, Eur. Polym. J. 38 (2002) 1887-1897.

DOI: 10.1016/s0014-3057(02)00064-2

Google Scholar

[2] J.W. Wang, X.H. Kong, L. Cheng, and Y.D. He, Inflence of clay concentration on the morphology and properties of clay-epoxy nanocomposites prepared by in-situ polymerization under ultrasonication, J. Univ. Sci. Technol. Beijing, 15 (2008) 320-323.

DOI: 10.1016/s1005-8850(08)60060-2

Google Scholar

[3] J. Pappas, K. Patel, E. B. Nauman, Structure and properties of phenolic resin/nanoclay composites synthesized by in situ polymerization, J. Appl. Polym. Sci. 95 (2005) 1169-1175.

DOI: 10.1002/app.21303

Google Scholar

[4] C. K. Lam, K. T. Lau, H. Y. Cheung, Effect of ultra-sound sonication in nanoclay clusters of nanoclay/epoxy composites, Mater. Lett. 59 (2005) 1369-1375.

DOI: 10.1016/j.matlet.2004.12.048

Google Scholar

[5] X. L. Zhang, L. Shen, X. Xia, H. T. Wang, Q. G. Du, Study on the interface of phenolic resin/expanded graphtie composites prepared via in situ polymerization, Mater. Chem. Phys. 111 (2008) 368-374.

DOI: 10.1016/j.matchemphys.2008.04.028

Google Scholar

[6] T. S. Chung, Y. J. Lan, Y. Li, Santi Kulprathipanja, Mixed matrix membranes comprising organic polymers with dispersed inorganic fillers for gas separation, Prog. Polym. Sci. 32 (2007) 483-507.

DOI: 10.1016/j.progpolymsci.2007.01.008

Google Scholar

[7] F. EI-Tantawy, K. Kamada, H. Ohnabe, In situ network structure, electrical and thermal properties of conductive epoxy resin-carbon black composites for electrical heater applications, Mater. Lett. 56 (2002) 112-118.

DOI: 10.1016/s0167-577x(02)00401-9

Google Scholar

[8] W. Zhang, Richard S. Blackburn, Abbas A. Dehghani-Sanij, Effect of solid particle loading on nucleophilic addition of epoxy-resin to isophorone diisocyanate, China Particuology, 6 (2007) 949-951.

DOI: 10.1016/j.cpart.2007.10.005

Google Scholar

[9] H. S. Jeon, J. K. Rameshwaram, G. Kim, Characterization of polyisoprene-clay nanocomposites prepared by solution blending, Polymer 44 (2003) 5749-5754.

DOI: 10.1016/s0032-3861(03)00466-x

Google Scholar

[10] Adbelaziz Bouazizi, Albert Gourdenne, Interaction between carbon black-epoxy resin composites and continuous microwaves-I. Electrical power dependence of the rate of crosslinking of the epoxy matrix, Eur. Polym. J. 24 (1988) 889-893.

DOI: 10.1016/0014-3057(88)90164-4

Google Scholar

[11] M. Nakahara, T. Takada, H. Kumagai, Y. Sanada, Surface chemisty of carbon black through curing process of epoxy resin, Carbon 33 (1995) 1537-1540.

DOI: 10.1016/0008-6223(95)00099-y

Google Scholar