Alloy and Powder Preparation of High Niobium Containing TiAl Based Alloys

Article Preview

Abstract:

High Nb containing TiAl based alloys exhibit excellent corrosion resistance to molten zinc. They are expected to serve as the potential coating materials of corrosion resistance to molten zinc. Four TiAl-Nb alloys of good oxidation resistance and their powders were prepared by arc-melting and ball milling, respectively. The Microstructure, Hardness, Coefficient of thermal expansion, and grain size distribution of four as-cast TiAl-Nb alloys and their powders were investigated. In addition, EPMA analysis was employed to further examine the existential state of element Y in as-cast TiAl-Nb alloys. It was found that element Y existed in the form of YAl2 phase in the grain boundaries and triple junctions. Higher content of Al in TiAl-Nb alloy results in bigger Coefficient of thermal expansion. Lamellar microstructures and fine grains exert a positive influence on hardness. Powders prepared by ball milling displayed angular and irregular morphology.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

150-155

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] O. Rios, S. Goyel, M. S. Kesler, D. M. Cupid, H. N. Seifert, F. Ebrahimi, Scripta Mater 60 (2009) 156.

DOI: 10.1016/j.scriptamat.2008.09.023

Google Scholar

[2] Z. C. Liu, J. P. Lin, S. J. Li, G. L. Chen, Intermetallics 10 (2002) 653.

Google Scholar

[3] J. P. Lin, X. J. Xu, Y. L. Wang, S. F. He, Y. Zhang, X. P. Song, G. L. Chen, Intermetallics 15 (2007) 668.

Google Scholar

[4] G. L. Chen, X. J. Xu, Z. K. Teng, Y. L. Wang, J. P. Lin, Intermetallics 15 (2007) 625.

Google Scholar

[5] I. Gurappa, Intermetallics 11 (2003) 867.

Google Scholar

[6] M. Yoshihara, K. Miura, Intermetallics 3 (1995) 351.

Google Scholar

[7] A. M. A. El-Rahman, M. F. Maitz, M. A. Kassem, F. M. El-Hossary, F. Prokert, H. Reuther, M. T. Pham, E. Richter, . Appl. Surf. Sci 253 (2007) 9067.

DOI: 10.1016/j.apsusc.2007.05.021

Google Scholar

[8] S. Oswald, R. Hermann, B. Schmidt, Mater. Sci. Eng A 516 (2009) 54.

Google Scholar

[9] Y. H. Wang, J. P. Lin, Y. H. He, Y. L. Wang, G. L. Chen, J. Alloys Comp 456 (2008) 297.

Google Scholar

[10] G. Henaff, A. L. Gloanec, Intermetallics 13 (2005) 543.

Google Scholar

[11] Y. C. Dong, D. R. Yan, J. N. He, J. X. Zhang, X Z. Li, Surf. Coat. Technol 201 (2006) 2455.

Google Scholar

[12] S. M. A. Shibli, R. Manu, V. S. Dilimon, Appl. Surf Sci 245 (2005) 179.

Google Scholar

[13] S. M. A. Shibli, R. Manu, S. Beegum, coat. Surf. Coat. Technol 202 (2008) 1733.

Google Scholar

[14] S. M. A. Shibl, R. Manu, Appl. Surf. Sci 252 (2006) 3058.

Google Scholar

[15] B. G. Seong, S. Y. Hwang, M. C. Kim, K. Y. Kim, Surf. Coat. Technol 138 (2001) 101.

Google Scholar

[16] W. J. Wang, J. P. Lin, Y. L. Wang, Y. Zhang, G. L. Chen, Mater. Sci. Eng A 452 (2007) 194.

Google Scholar

[17] J. P. Lin, W. J. Wang, Y. L. Wang, Y. Zhang, Z. Lin, G. L. Chen, CHN Patent 10011237. 5 (2006).

Google Scholar

[18] Q. M. Wan. In: Thesis, University of Science and Technology, Beijing (2009).

Google Scholar

[19] G. L. Chen, J. G. Wang, X. D. Ni, J. P. Lin, Y. L. Wang, Intermetallics 13 (2005) 329.

Google Scholar

[20] A. Hellwig, M. Palm, G. Inden, Intermetallics 6 (1998) 94.

Google Scholar