Self-Collimation in Square Lattice Two Dimensional Photonic Crystals with Ring-Shaped Holes

Article Preview

Abstract:

We demonstrate self-collimation phenomena based on a new type of photonic crystals made of square lattice with ring shaped holes. The plane wave expansion (PWE) method is used to get the three dimensional band diagram and equi-frequency of the second band which displays the self-collimation phenomena for the structure we proposed in this paper. The collimation angle is mainly depending on the maximum flatness half width (MFHW) of the equi-frequency. The FDTD method is employed to demonstrate the electric field amplitude distributions for the collimation phenomena. Partly, in order to achieve high efficient coupling of the input and output port, we modify both surface structures to modulate the wave-front to obtain desired effect. The parameter of the input surface is modified which will prevent the production of surface modes which takes away the EM power and enhance the transmittance. For a square lattice with the modified parameters at each side of the input surface, the surface modes are suppressed to couple with the continuum of the dielectric waveguide modes. More importantly, they might have potential application in integrated optical circuits.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1024-1029

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Yablonovitch, Inhibited Spontaneous Emission in Solid-State Physics and Electronics, Phys. Rev. Lett. 58, 1987, p.2059-(2062).

DOI: 10.1103/physrevlett.58.2059

Google Scholar

[2] S. John, Strong localization of photons in certain disordered dielectric super-lattices, Phys. Rev. Lett. 58, 1987, pp.2486-2489.

DOI: 10.1103/physrevlett.58.2486

Google Scholar

[3] H. Koseka, T. Kawanshima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S, Kawakami, Self-collimating phenomena in photonic crystals, Appl. Phys. Lett. 74(9), 1999, pp.1212-1214.

DOI: 10.1063/1.123502

Google Scholar

[4] L. J. Wu, M. Mazilu, and T. F. Krauss, Beam steering in planar-photonic crystal: from super-prism to super-collimator, J. Lightwave Technol. 21(2), 2003, pp.561-566.

DOI: 10.1109/jlt.2003.808773

Google Scholar

[5] L.J. Wu, M. Mazilu, T. Karle, and T. F. Krauss, Super-prism phenomena in planar photonic crystals, IEEE J. Quantum Electron. 38(7), 2002, pp.915-918.

DOI: 10.1109/jqe.2002.1017607

Google Scholar

[6] D. W. Prather, S. Y. Shi, D. M. Pustai, C. H. Chen, S. Venkataraman, A. Sharkawy, G. J. Schneider, and J. Murakowski, Dispersion-based optical routing in photonic crystals, Opt. Lett. 29(1), 2004, pp.50-52.

DOI: 10.1364/ol.29.000050

Google Scholar

[7] M. Mulot, A. S¨ayn¨atjoki, S. Arpiainen, H. Lipsanen and J. Ahopelto, Photonic crystal slabs with ring-shaped holes in a triangular lattice, proceedings of the 3rd European Symposium on Photonic Crystals (ESPC 2005), Barcelona, Spain, 3-7 July, (2005).

DOI: 10.1109/icton.2005.1505773

Google Scholar

[8] H. Kurt and D. S. Citrin, Annular Photonic Crystals, Opt. Express 13, 2005, pp.10316-10326.

DOI: 10.1364/opex.13.010316

Google Scholar

[9] M. Mulot, A. S¨ayn¨atjoki, S. Arpiainen, H. Lipsanen, J. Ahopelto, Slow light propagation in photonic crystal waveguides with ring-shaped holes, accepted for publication in J. Opt. A : Pure and Appl. Opt.

DOI: 10.1088/1464-4258/9/9/s22

Google Scholar

[10] A. S¨ayn¨atjoki,M. Mulot, S. Arpiainen, J. Ahopelto, and H. Lipsanen, Photonic crystals with ring-shaped holes, PECS VII conference, Monterey, USA, 8-11 April, (2007).

DOI: 10.1109/icton.2005.1505773

Google Scholar

[11] J.P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys. 114, 1994, pp.185-189.

Google Scholar