Synthesis of Ag Core @ Au Shell Composite Nanoparticles by Spontaneous Deposit Au on the Surface of Ag Seeds

Article Preview

Abstract:

A new synthesis of Ag @ Au core-shell composite nanoparticles (NPs) was described by spontaneous deposit Au on the surface of Ag seeds which were prepared with the photochemical method in sodium citrate solution. The Ag core @ Au shell (or Ag core @ Au-Ag alloy shell) composite NPs with monodisperse and uniform shape were about 10 nm. The core/shell nanostructure was confirmed by UV-vis spectrum and TEM characterization as well as cyanide ion (CN-) dissolution experiment. The reaction mechanism of forming Ag @ Au composite NPs was briefly discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1030-1035

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. A. Dong, and C. Tang, Photochemical synthesis of bimetallic Au-Ag nanoparticles with a "core-shell" type structure by seed mediated catalytic growth, Trans. Nonferrous Met. Soc. China, vol. 15, pp.310-313, Apr. (2005).

Google Scholar

[2] S. A. Dong, and C. Tang, The gold and silver nanoparticles for DNA identify, biosensor and biochip, Precious Metals, vol. 26, pp.53-61, (2005).

Google Scholar

[3] M. P. Mallin, and C. J. Murphy, Solution-phase synthesis of sub-10 nm Au-Ag alloy nanoparticles, Nano Letters, vol. 2, pp.1235-1237, (2002).

DOI: 10.1021/nl025774n

Google Scholar

[4] S. Chen, M. Zhou, S. Zhao, and H. Ma, One-step synthesis of Au-Ag alloy nanoparticles by a convenient electrochemical method, Physica E, vol. 33, pp.28-34, (2006).

DOI: 10.1016/j.physe.2005.10.012

Google Scholar

[5] P. Mulvaney, M. Giersig, and A, Henglein, Electrochemistry of multilayer colloids: preparation and absorption spectrum of gold-coated silver particles, J. Phys. Chem., vol. 97, pp.7061-7064, (1993).

DOI: 10.1021/j100129a022

Google Scholar

[6] I. Srnova´-Sÿloufova´, F. Lednicky´, A. Gemperle, and J. Gemperlova, Core-shell (Ag) Au bimetallic nanoparticles: analysis of transmission electron microscopy images, Langmuir, vol. 16, pp.9928-9935, (2000).

DOI: 10.1021/la0009588

Google Scholar

[7] I. Srnova´-Sÿloufova´, B. Vlcˇkova, Z. Bastl, and T. L. Hasslett, Bimetallic (Ag)Au nanoparticles prepared by the seed growth method: two-dimensional assembling, characterization by energy dispersive X-ray analysis, X-ray photoelectron spectroscopy, and surface enhanced Raman spectroscopy, and proposed mechanism of growth, Langmuir, vol. 20, pp.3407-3415, (2004).

DOI: 10.1021/la0302605

Google Scholar

[8] Y. Cui, B. Ren, J. L. Yao, R. A. Gu, and Z. Q. Tian, Synthesis of Agcore-Aushell bimetallic nanoparticles for immunoassay based on surface enhanced Raman spectroscopy, J. Phys. Chem. B, vol. 110, pp.4002-4006, (2006).

DOI: 10.1021/jp056203x

Google Scholar

[9] L. Qian, and X. Yang, Preparation and characterization of Ag (Au) bimetallic core-shell nanoparticles with new seed growth method, Colloids and Surfaces A, vol. 260, pp.79-85, (2005).

DOI: 10.1016/j.colsurfa.2005.03.005

Google Scholar

[10] G. V. P. Kumar, S. Shruthi, B. Vibha, B. A. A. Reddy, T. K. Kundu, and C. Narayana, Hot spots in Ag core-Au shell nanoparticles potent for surface-enhanced Raman scattering studies of biomolecules, J. Phys. Chem. C, vol. 111, pp.4388-4392, (2007).

DOI: 10.1021/jp068253n

Google Scholar

[11] Y. W. Cao, R. Jin, and C. A. Mirkin, DNA-modified core-shell Ag/Au nanoparticles, J. Am. Chem. Soc., vol. 123, pp.7961-7962, (2001).

DOI: 10.1021/ja011342n

Google Scholar

[12] J. Yang, J. Y. Lee, and H. P. Too, Core-shell Ag-Au nanoparticles from replacement reaction in organic medium, J. Phys. Chem. B, vol. 109, pp.19208-19212, (2005).

DOI: 10.1021/jp052242x

Google Scholar

[13] Y. Yang, J. Shi, G. Kawamura, and M. Nogami, Preparation of Au-Ag, Ag-Au core-shell bimetallic nanoparticles for surface-enhanced Raman scattering, Scripta Materialia, vol. 58, pp.862-865, (2008).

DOI: 10.1016/j.scriptamat.2008.01.017

Google Scholar

[14] Y. Sun, B. Mayers, and Y. N. Xia, Template-engaged replacement reaction: a one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors, Nano Letters, vol. 2, pp.481-485, (2002).

DOI: 10.1021/nl025531v

Google Scholar

[15] Y. Sun, B. Mayers, and Y. N. Xia, Metal Nanostructures with Hollow Interiors, Advanced Materials, vol. 15, pp.641-646, (2003).

DOI: 10.1002/adma.200301639

Google Scholar

[16] S. A. Dong, C. Tang, H. Zhou, and H. Z. Zhao, Photochemical synthesis of gold nanoparticles by the sunlight radiation using a seeding approach, Gold Bulletin, vol. 37, pp.187-195, (2004).

DOI: 10.1007/bf03215212

Google Scholar

[17] S. C. Yang, S. A. Dong, C. Tang, and P. J. Li, Study on the reaction mechanism of silver nanoparticles with cyanide, Rare Metal Materials and Engineering, vol. 34, pp.1243-1246, Aug. (2005).

Google Scholar

[18] Y. N. Dong, S. A. Dong, and C. Tang, Photochemical Synthesis and Characterization of Gold@Palladium Core-Shell Composite Nanoparticles, Chem. J. Chinese. Univ., vol. 30, pp.1397-1401, Jul. (2009).

Google Scholar