[1]
Waterjet Cutting Machines: A Global Strategic Business, Report Global Industry Analysts Inc., (2010).
Google Scholar
[2]
Hashish, M., Milling with abrasive water jets: A preliminary investigation, in Proc. 4th US Water Jet Conference. 1984, A.S.M.E.: New York. pp.1-10.
Google Scholar
[3]
Ojmertz, K.M.C., Abrasive Waterjet Milling: An Experimental Investigation, in 7th American Water Jet Conference. 1993: Seattle, Washington. pp.777-791.
Google Scholar
[4]
Ojmertz, K.M.C. and N. Amini. A Discrete Approach to the Abrasive Waterjet Milling Process. in Jet Cutting Technology. 1994. Rouen, France.
Google Scholar
[5]
Paul, S., Hoogstrate, A.M., van Luttervelt, C.A. and Kals, H.J.J., An experimental investigation of rectangular pocket milling with abrasive water jet. Journal of Materials Processing Technology. 1998, 73(1-3), pp.179-188.
DOI: 10.1016/s0924-0136(97)00227-6
Google Scholar
[6]
Shipway, P.H., Fowler, G. and Pashby, I.R., Characteristics of the surface of a titanium alloy following milling with abrasive waterjets. Wear. 2005, 258(1-4), pp.123-132.
DOI: 10.1016/j.wear.2004.04.005
Google Scholar
[7]
Ansari, A.I., Hashish, M. and Ohadi, M.M., Flow visualization study of the macromechanics of abrasive-waterjet turning. Experimental Mechanics. 1992, 32(4), pp.358-364.
DOI: 10.1007/bf02325589
Google Scholar
[8]
Axinte, D.A., Stepanian, J.P., Kong, M.C. and McGourlay, J., Abrasive waterjet turning - An efficient method to profile and dress grinding wheels. Short Communication, International Journal of Machine Tools & Manufacture. 2009, 49(3-4), pp.351-356.
DOI: 10.1016/j.ijmachtools.2008.11.006
Google Scholar
[9]
Kovacevic, R., Kwak, H. -S. and Mohan, R.S., Acoustic emission sensing as a tool for understanding the mechanisms of abrasive water jet drilling of difficult-to-machine materials. IMechE, Part B: Journal of Engineering Manufacture. 1998, 212(B), pp.45-58.
DOI: 10.1243/0954405981515491
Google Scholar
[10]
Orbanic, H. and Junkar, M., An experimental study of drilling small and deep blind holes with an abrasive water. IMechE, Part B: Journal of Engineering Manufacture. 2004, 218(5), pp.503-508.
DOI: 10.1177/095440540421800504
Google Scholar
[11]
Palleda, M., A study of taper angles and material removal rates of drilled holes in the abrasive water jet machining process. Journal of Materials Processing Technology. 2007, 189(1-3), pp.292-295.
DOI: 10.1016/j.jmatprotec.2007.01.039
Google Scholar
[12]
Hoogstrate, A.M. and van Luttervelt, C.A. Opportunities in Abrasive Water-Jet Machining,. Annals of the CIRP. 1997, 46(2), pp.697-714.
DOI: 10.1016/s0007-8506(07)90008-6
Google Scholar
[13]
Rupal Mehta, Europe's first state-of-the-art waterjet machining centre, Materials World Magazine, 31 Mar 2007. http: /www. iom3. org.
Google Scholar
[14]
Kong, M.C. and Axinte, D.A., Response of titanium aluminide alloy to abrasive waterjet cutting: geometrical accuracy and surface integrity issues versus process parameters. Proceedings of the IMechE Part B: Journal of Engineering Manufacture. 2009, 223(1), pp.19-42.
DOI: 10.1243/09544054jem1226
Google Scholar
[15]
Axinte, D. Srinivasu, D., Kong, M.C. and Butler-Smith, P., Abrasive waterjet cutting of polycrystalline diamond: A preliminary investigation. International Journal of Machine Tools and Manufacture. 2009, 49(10), pp.797-803.
DOI: 10.1016/j.ijmachtools.2009.04.003
Google Scholar
[16]
Arola D. and Ramulu, M., A study of kerf characteristics in abrasive water jet machining of graphite/epoxy composite. Transactions of the ASME - Journal of Engineering Materials and Technology, 1996, 118(2), pp.256-265.
DOI: 10.1115/1.2804897
Google Scholar
[17]
Momber, A.W. and Kovacevic, R. Principles of Abrasive Water Jet Machining, 1998, Springer, London, New York.
DOI: 10.1007/978-1-4471-1572-4
Google Scholar
[18]
Huang, H., Zheng, H.Y., Liu, Y. Experimental investigations of the machinability of Ni50. 6Ti49. 4 alloy. Smart Materials and Structures. 2005, 14, pp. S297-S301.
DOI: 10.1088/0964-1726/14/5/019
Google Scholar
[19]
Hunter, D.T. Double tipped diamond drill bit. U.S.P.A. Publication. 05 Feb 2009, application no.: 12/184, 708. patent no.: US 2009/0035083 A1.
Google Scholar
[20]
Lin, H.C., Lin, K.M. and Chen, Y.C., A study on the machining characteristics of TiNi shape memory alloys. Journal of Materials Processing Technology. 2000, 105(3), pp.327-332.
DOI: 10.1016/s0924-0136(00)00656-7
Google Scholar
[21]
Weinert, K., Petzoldt, V., Kötter, D. and Buschka, M., Drilling of NiTi Shape Memory Alloys. Materialwissenschaft und Werkstofftechnik. 2004, 35(5), pp.338-341.
DOI: 10.1002/mawe.200400752
Google Scholar
[22]
Weinert, K. and Petzoldt, V., Machining of NiTi based shape memory alloys. Materials Science and Engineering A. 2004, 378(1-2), pp.180-184.
DOI: 10.1016/j.msea.2003.10.344
Google Scholar
[23]
Hashish, M., Controlled-depth milling of isogrid structures with AWJs. Journal of Manufacturing Science and Engineering, 1998. 120(1): pp.21-27.
DOI: 10.1115/1.2830106
Google Scholar
[24]
Hashish, M., An investigation of milling with abrasive-waterjets. Journal of Engineering for Industry, 1994. 111(2): pp.158-166.
DOI: 10.1115/1.3188745
Google Scholar
[25]
Ojmertz, K.M.C. and N. Amini, A discrete approach to the abrasive waterjet milling process, in 12th International Conference on Jet Cutting Technology. 1994: Rouen, France. pp.425-434.
Google Scholar
[26]
D. Axinte, (Project Co-ordinator), Self-learning control system for freeform milling with high energy fluid jets,. [EU Seventh Framework Programme - NMP] (2009-2012), http: /www. conformjet. eu.
Google Scholar
[27]
Ansari, A.I. and M. Hashish, Effect of abrasive waterjet parameters on volume removal trends in turning, Journal of Engineering for Industry. Transactions of the ASME, 1995. 117(4): pp.475-484.
DOI: 10.1115/1.2803524
Google Scholar
[28]
Manu, R. and N. Babu, Influence of jet impact angle on part geometry in abrasive waterjet turning of aluminium alloys. International Journal of Machining and Machinability of Materials, 2008. 3(1-2): pp.120-132.
DOI: 10.1504/ijmmm.2008.017629
Google Scholar
[29]
Zhong, Z.W. and Z.Z. Han, Turning of glass with abrasive waterjet. Materials and Manufacturing Processes, 2002. 17(3): pp.339-349.
DOI: 10.1081/amp-120005380
Google Scholar
[30]
Ansari, A.I., M. Hashish, and M.M. Ohadi, Flow visualization study of the macromechanics of abrasive-waterjet turning. Experimental Mechanics, 1992. 32(4): pp.358-364.
DOI: 10.1007/bf02325589
Google Scholar
[31]
Shaw, M.C., Principles of Abrasive Processing. 1996, New York: Oxford University Press Inc.
Google Scholar
[32]
Salje, E. and H.G. v. Mackensen, Dressing of conventional and CBN grinding wheels with diamond form rollers. CIRP Annals, 1984. 33(1): pp.205-209.
DOI: 10.1016/s0007-8506(07)61410-3
Google Scholar