Molecular and Electronic Structure of 1-Naphtol : Ab Initio Molecular Orbital and Density Functional Study

Article Preview

Abstract:

The molecular vibrations of 1-Naphtol were investigated in polycrystalline sample, at room temperature, by FT- IR and FT-Raman spectroscopy. In parallel, ab initio and various density functional (DFT) methods were used to determine the geometrical, energetic and vibrational characteristics of 1-Naphtol . On the basis of B3LYP/6-31G* and B3LYP/6-311+G** methods and basis set combinations, a xnormal mode analysis was performed to assign the various fundamental frequencies according to the total energy distribution (TED). The vibrational spectra were interpreted, with the aid of normal coordinate analysis based on a scaled quantum mechanical force field. The Infrared and Raman spectra were also predicted from the calculated intensities. Comparison of simulated spectra with the experimental spectra provides important information about the ability of the computational method to describe the vibrational modes. Simulation of Infrared and Raman spectra, utilizing the results of these calculations led to excellent overall agreement with observed spectral patterns. The investigation is performed using quantum chemical calculations conducted by means of the Gaussian 98W and Guassview set of programs. Further, density functional theory (DFT) combined with quantum chemical calculations to determine the first-order hyperpolarizability.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1862-1869

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B.A. Hess Jr., J. Schaad, P. Carsky, R. Zahradnik, Chem. Rev. 86 (1986) 709.

Google Scholar

[2] P. Pulay, X. Zhou, G. Fogarasi, in: R. Fausto (Ed. ), NATO ASI Series, vol. C406, Kluwer, Dordrecht, (1993).

Google Scholar

[3] C.E. Blom, C. Altona, Mol. Phys. 31 (1976) 1377.

Google Scholar

[4] P. Pulay, G. Fogarasi, G. Pongor, J.E. Boggs, A. Vargha, J. Am. Chem. Soc. 105 (1983) 7037.

Google Scholar

[5] G. Fogarasi, P. Pulay, in: J.R. Durig (Ed. ), Vibrational Spectra and Structure, vol. 14, Elsevier, Amsterdam, (1985).

Google Scholar

[6] G. Fogarasi, Spectrochim. Acta 53A (1997) 1211.

Google Scholar

[7] G. Pongor, P. Pulay, G. Fogarasi, J.E. Boggs, J. Am. Chem. Soc. 106 (1984) 2765.

Google Scholar

[8] G.R. De Mare, Y.N. Panchenko, C.W. Bock, J. Phys. Chem. 98 (1994) 1416.

Google Scholar

[9] Y. Yamakita, M. Tasumi, J. Phys. Chem. 99 (1995) 8524.

Google Scholar

[10] M.J. Frisch, G.W. Trucks, H.B. Schlega, G.E. Scuseria, M.A. Robb, J.R. Cheesman, V.G. Zakrzewski, J.A. Montgomery Jr., R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, N. Roga, P. Salvador, J.J. Dannenberg, D.K. Malick, A.D. Rabuck, K. Rahavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Baboul, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Penng, A. Nanayakkara, M. Challa-Combe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M. Head-Gordon, E.S. Replogle and J.A. Pople, Gaussian 98, Revision A 11. 4, Gaussian Inc., Pittsburgh, PA (2002).

Google Scholar

[11] A.D. Becke, J. Chem. Phys. 98 (1993) 5648.

Google Scholar

[12] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B. 37 (1998) 785.

Google Scholar

[13] P. Pulary, G. Fogarasi, G. Pongor, J.E. Boggs, A. Vargha, J. Am. Chem. Soc. 105 (1983) 7037.

Google Scholar

[14] G. Rauhut, P. Pulay, J. Phys. Chem. 99 (1995) 3093.

Google Scholar

[15] G. Fogarasi and P. Pulay In: J.R. Durig, Editor, Vibrational Spectra and Structure vol. 14, Elsevier, Amsterdam (1985), p.125 (Chapter 3).

Google Scholar

[16] G. Fogarasi, X. Xhov, P.W. Taylor and P. Pulay, J. Am. Chem. Soc. 114 (1992), p.8191.

Google Scholar

[17] T. Sundius. J. Mol. Struct. 218 (1990) 321.

Google Scholar

[18] (a) T. Sundius, Vib. Spectrosc. 29 (2002) 89-95. (b) MOLVIB (v. 7. 0), Calculation of harmonic force fields and vibrational modes of molecules, QCPE Program No. 807, (2002).

DOI: 10.1016/s0924-2031(01)00189-8

Google Scholar

[19] P.L. Polavarapu, J. Phys. Chem. 94 (1990) 8106.

Google Scholar

[20] G. Keresztury, S. Holly, J. Varga, G. Besenyei, A.V. Wang, J.R. Durig, Spectrochim. Acta 49A (1993) (2007).

Google Scholar

[21] G. Keresztury, in: J.M. Chalmers and P.R. Griffiths(Eds), Handbook of Vibrational Spectroscopy vol. 1, John Wiley & Sons Ltd. (2002), p.71.

Google Scholar

[22] A.D. Becke, J. Chem. Phys. 98 (1993) 5648.

Google Scholar

[23] H.D. Cohen, C.C.J. Roothan, J. Chem. Phys. 435 (1965) S34.

Google Scholar

[24] D.N. Sathyanarayana, Vibrational Spectroscopy—Theory and Applications, second ed., New Age International (P) Limited Publishers, New Delhi, (2004).

Google Scholar

[25] George Socrates, Infrared and Raman Characteristic Group Frequencies -Tables and Charts (third ed. ), John Wiley & Sons, Chichester (2001).

DOI: 10.1002/jrs.1238

Google Scholar

[26] V. Krishna kumar, R. John Xavier, Indian J. Pure Appl. Phys. 41 (2003) 95.

Google Scholar

[27] D.A. Kleinman, Phys. Rev. 126 (1962) (1977).

Google Scholar

[28] B. Lakshmaiah, G. Ramana Rao, J. Raman Spectrosc. 20 (1989) 439.

Google Scholar

[29] G. Raja,K. Saravanan and S. Sivakumar, Int. J. of Curr. Res, 3 (2010) 46.

Google Scholar