[1]
Melvern, Nanotechnology Solutions, Innovative Solutions in MaterialCharacterization. http: /www. malvern. com, accessed on 21st August, (2010).
Google Scholar
[2]
S. Gelperina, K. Kisich, D. Michael, Iseman, and L. Heifets, The Potential Advantages of Nanoparticle Drug Delivery Systems in Chemotherapy of Tuberculosis, m Am J Respir Crit Care Med Vol 172. p.1487–1490, (2005).
DOI: 10.1164/rccm.200504-613pp
Google Scholar
[3]
J. Prasad, Mathuria, Nanoparticles in Tuberculosis Diagnosis, Treatment and Prevention: A hope for future, Digest Journal of Nanomaterials and Biostructures Vol. 4. No. 2, p.309 – 312, (2009).
Google Scholar
[4]
Justo OR, AM. Moraes, Kanamycin incorporation in lipid vesicles prepared by ethanol injection designed for tuberculosis treatment,. J Pharm Pharmacol; Vol. 57. pp.23-30, (2005).
DOI: 10.1211/0022357055092
Google Scholar
[5]
JM. Irache, M. Merodio, A. Arnedo, MA. Camapanero, M. Mirshahi, S. Espuelas, Albumin nanoparticles for the intravitreal delivery of anticytomegaloviral drugs, Mini Rev Med Chem Vol. 5. pp.293-305, (2005).
DOI: 10.2174/1389557053175335
Google Scholar
[6]
RB. Umamaheshwari, S. Ramteke, N.K. Jain, Anti-Helicobacter pylori effect of mucoadhesive nanoparticles bearing amoxicillin in experimental gerbils model, AAPS Pharm Sci Tech Vol. 5. e32, (2004).
DOI: 10.1208/pt050232
Google Scholar
[7]
R. Pandey, Z. Ahmad, S. Sharma, G.K. Khuller, Nanoencapsulation of azole antifungals: potential applications to improve oral drug delivery, Int J Pharm 2005; 301: 268-76.
DOI: 10.1016/j.ijpharm.2005.05.027
Google Scholar
[8]
R.M. Lucinda-Silva, R.C. Evangelista, Microspheres of alginatechitosan containing isoniazid, J Micropencasul Vol. 20. pp.145-52, (2003).
Google Scholar
[9]
G.K. Khuller, M. Kapur, S. Sharma, Liposome technology for drug delivery against mycobacterial infections, Curr Pharm Des Vol. 10. No. 32 pp.63-74, (2004).
DOI: 10.2174/1381612043383250
Google Scholar
[10]
Q. Ain, S. Sharma, G.K. Khuller, S.K. Garg, Alginatebased oral drug delivery system for tuberculosis: pharmacokinetics and therapeutic effects, J Antimicrob Chemother; Vol 51. pp.931-8, (2003).
Google Scholar
[11]
R. Pandey, G.K. Khuller,. Chemotherapeutic potential of alginatechitosan microspheres as antitubercular drug carriers, J Antimicrob Chemother; Vol 53. pp.635-40, (2004).
Google Scholar
[12]
K.C. Stone, R.R. Mercer., P. Gehr., B. Stockstill, J.D. Capro, Allometric relationships of cell numbers and size in the mammalian lung, Am. J. Respir. Cell Mol. Biol.; Vol 6. pp.235-243, (1992).
DOI: 10.1165/ajrcmb/6.2.235
Google Scholar
[13]
Gehr P. The normal human lung: ultrastructure and morphometric estimations of diffusion capacity. Physiol.; Vol 32. pp.121-140, (1978).
DOI: 10.1016/0034-5687(78)90104-4
Google Scholar
[14]
C. Jacobs & R. H. Muller, Production and characterization of a budesonide nanosuspension for pulmonary administration, Pharmaceutical Research.; Vol. 19, p.189–94, (2002).
Google Scholar
[15]
R. A. Jain, The manufacturing techniques of various drug loaded biodegradable poly (lactide-co-glycolide) (PLGA) devices,. Biomaterials; Vol. 21. p.2475–90, (2000).
DOI: 10.1016/s0142-9612(00)00115-0
Google Scholar
[16]
I. Bala, S. Hariharan, & M. N. V. R. Kumar, PLGA nanoparticles in drug delivery: the state of the art. Critical Reviews in Therapeutic Drug Carrier Systems, Vol. 21. p.387–422, (2004).
DOI: 10.1615/critrevtherdrugcarriersyst.v21.i5.20
Google Scholar
[17]
A. Lamprecht, N. Ubrich, P. Hombreiro, et al. Biodegradable monodispersed nanoparticles prepared by pressure homogenizationemulsification, International Journal of Pharmaceutics; Vol. 184, p.97–105, (1999).
DOI: 10.1016/s0378-5173(99)00107-6
Google Scholar
[18]
J. Crofton, P. Chaulet, D. Maher, Guidelines for the management of drug resistant tuberculosis, WHO/ TB/ 96. 210 Rev (1), (1997).
Google Scholar
[19]
R. Singh, D. Gothi, J.M. Joshi, Multidrug resistant tuberculosis: role of previous treatment with second line therapy on treatment outcome. Lung India,; Vol. 24. pp.54-57, (2007).
DOI: 10.4103/0970-2113.44211
Google Scholar
[20]
R.F. Taylor, and J.S. Schultz,. Handbook of Chemical and Biological Sensors,. Institute of Physics Publishing, Bristol, UK, (1996).
Google Scholar
[21]
T.K. Christopoulos, Anal. Chem,.; 71, 425R-438R, (1999).
Google Scholar
[22]
E. Palecek, M. Fojta, M. Tomschick, and J. Wang, Biosens. Bioelectron,; 13, 621-628, (1998).
Google Scholar
[23]
J. Zhai, C. Hong, and R. Yang, Biotechnol, Adv.; 15, 43-58., (1997).
Google Scholar
[24]
J. Wang, From DNA biosensors to gene chips, Nucleic Acids.
Google Scholar
[25]
Research; vol. 28, No. 16, 3011-1016, (2000).
Google Scholar
[26]
K.K. Jain, . Nanotechnology in clinical laboratory diagnostics, Clinica Chimica Acta; 358, 37–54 (2005).
DOI: 10.1016/j.cccn.2005.03.014
Google Scholar
[27]
W. H De Jong, and J.A. Paul Borm, Drug delivery and nanoparticles: Applications and hazards, Int J Nanomedicine. 2008 une; 3(2): 133–149. Published online 2008 June.
Google Scholar