Technical Development on Rapid Green Silicone Rubber Mold

Article Preview

Abstract:

Rapid tooling technology is regarded as an important approach of reducing the cost and time to market for new products. Silicone rubber mold is frequently employed in the indirect tooling. Based on green manufacturing, a green silicone rubber mold fabrication process is developed and implemented in this work. This method provided a new, simple and green manufacturing to produce silicone runner mold. The advantages of this method include high yields of the mold fabrication, reducing the cost in the mold fabrication and environmentally conscious manufacturing. The saving in the cost of silicone rubber mold fabrication is up to 35.66 %.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2201-2205

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Kochan, C. C. Kai, D. Zhaohui, Rapid prototyping issues in the 21st century, Computers in Industry, Vol. 39, 1999, Pages 3-10.

DOI: 10.1016/s0166-3615(98)00125-0

Google Scholar

[2] A. Rosochowski, A. Matuszak, Rapid tooling: the state of the art, Journal of Materials Processing Technology, Vol. 106, 2000, Pages 191-198.

DOI: 10.1016/s0924-0136(00)00613-0

Google Scholar

[3] H. C. Zhang, T. C. Kuo, H. Lu, S. H. Huang, Environmentally conscious design and manufacturing: A state-of-the-art survey, Journal of Manufacturing Systems, Volume 16, Issue 5, 1997, Pages 352-371.

DOI: 10.1016/s0278-6125(97)88465-8

Google Scholar

[4] X. C. Tan, F. Liu, H. J. Cao, H. Zhang, decision-making framework model of cutting fluid selection for green manufacturing and a case study, Journal of Materials Processing Technology, Vol. 129, 2002, Pages 467-470.

DOI: 10.1016/s0924-0136(02)00614-3

Google Scholar

[5] J. Hur, K. Lee, Z. Hu, J. Kim, Hybrid rapid prototyping system using machining and deposition, Computer-Aided Design, Vol. 34, 2002, Pages 741-754.

DOI: 10.1016/s0010-4485(01)00203-2

Google Scholar

[6] D. King, T. Tansey, Alternative materials for rapid tooling, Journal of Materials Processing Technology, Vol. 121, 2002, Pages 313-317.

DOI: 10.1016/s0924-0136(01)01145-1

Google Scholar

[7] J. C. Ferreira, A. Mateus, Studies of rapid soft tooling with conformal cooling channels for plastic injection moulding, Journal of Materials Processing Technology, Vol. 142, 2003, Pages 508-516.

DOI: 10.1016/s0924-0136(03)00650-2

Google Scholar

[8] M. Pinto, A. D. Santos, P. Teixeira, P.J. Bolt, Study on the usability and robustness of polymer and wood materials for tooling in sheet metal forming, Journal of Materials Processing Technology, Vol. 202, 2008, Pages 47-53.

DOI: 10.1016/j.jmatprotec.2007.08.082

Google Scholar

[9] D. King, T. Tansey, Rapid tooling: selective laser sintering injection tooling, Journal of Materials Processing Technology, Vol. 132, 2003, Pages 42-48.

DOI: 10.1016/s0924-0136(02)00257-1

Google Scholar

[10] B. ODonnchadha, A. Tansey, A note on rapid metal composite tooling by selective laser sintering, Journal of Materials Processing Technology, Vol. 153, 2004, Pages 28-34.

DOI: 10.1016/j.jmatprotec.2004.04.034

Google Scholar

[11] H. Durr, R. Pilz, N. S. Eleser, Rapid tooling of EDM electrodes by means of selective laser sintering, Computers in Industry, Vol. 39, 1999, Pages 35-45.

DOI: 10.1016/s0166-3615(98)00123-7

Google Scholar

[12] A. Simchi, F. Petzoldt, H. Pohl, On the development of direct metal laser sintering for rapid tooling, Journal of Materials Processing Technology, Vol. 141, 2003, Pages 319-328.

DOI: 10.1016/s0924-0136(03)00283-8

Google Scholar

[13] Environmentally Conscious Manufacturing, National Science Foundation program guideline, May (1995).

Google Scholar

[14] C. C. Kuo, C. Y. Lin, X. Z. Wu, Development of an adjustable mold box for making silicone rubber mold, 2010 IEEE International Conference on Industrial Engineering and Engineering Management, Macao, December 7-10, (2010).

DOI: 10.1109/ieem.2010.5675606

Google Scholar

[15] S. Chung, Y. Im, H. Kim, H. Jeong, D. A. Dornfeld, Evaluation of micro-replication technology using silicone rubber molds and its applications, International Journal of Machine Tools and Manufacture, Vol. 43, 2003, Pages 1337-1345.

DOI: 10.1016/s0890-6955(03)00164-0

Google Scholar

[16] X. F. Li, K. T. Lau, Y. S. Yin, Mechanical properties of epoxy-based composites using coiled carbon nanotubes, Composites Science and Technology, Vol. 68, 2008, Pages 2876-2881.

DOI: 10.1016/j.compscitech.2007.10.019

Google Scholar

[17] Pedro V. Vasconcelos, F. Jorge Lino, Antonio M. Baptista, Rui J.L. Neto, Tribological behaviour of epoxy based composites for rapid tooling, Wear, Vol. 260, 2006, Pages 30-39.

DOI: 10.1016/j.wear.2004.12.030

Google Scholar

[18] J. Gassan, T. Dietz, Fatigue behavior of cross-ply glass-fiber composites based on epoxy resins of different toughnesses, Composites Science and Technology, Vol. 61, 2001, Pages 157-163. ].

DOI: 10.1016/s0266-3538(00)00205-0

Google Scholar

[19] C.G. Li, C.L. Li, Plastic injection mould cooling system design by the configuration space method, Computer-Aided Design, Vol. 40, 2008, Pages 334-349.

DOI: 10.1016/j.cad.2007.11.010

Google Scholar

[20] J. C. Ferreira, A. Mateus, Studies of rapid soft tooling with conformal cooling channels for plastic injection moulding, Journal of Materials Processing Technology, Vol. 142, 2003, Pages 508-516.

DOI: 10.1016/s0924-0136(03)00650-2

Google Scholar