[1]
F.E. Osterloh, Inorganic materials as catalysts for photochemical splitting of water, Chem. Mater., vol. 20, pp.35-54, (2008).
Google Scholar
[2]
A. Kudo and Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev., vol. 38, pp.253-278, (2009).
DOI: 10.1039/b800489g
Google Scholar
[3]
M.A. Gondal, A. Hameed, Z.H. Yamani, Laser induced photocatalytic splitting of water over WO3 catalyst, Energy Sources, vol. 27, pp.1151-1165, (2005).
DOI: 10.1080/00908310490479574
Google Scholar
[4]
Lisha Zhang, Wenzhong Wang, Zhigang Chen, Lin Zhou, Haolan Xu and Wei Zhu, Fabrication of flower-like Bi2WO6 superstructures as high performance visible-light driven photocatalysts, J. Mater. Chem., vol. 17, pp.2526-2532, (2007).
DOI: 10.1039/b616460a
Google Scholar
[5]
F. Zhang, M.Y. Sfeir, J.A. Misewich and S.S. Wong, Room-temperature preparation, characterization, and photoluminescence measurements of solid solutions of various compositionally-defined single-crystalline alkaline-earth-metal tungstate nanorods, Chem. Mater., vol. 20, pp.5500-5512, (2008).
DOI: 10.1021/cm800011j
Google Scholar
[6]
Di Chen and Jinhua Ye, Hierarchical WO3 hollow shells: dendrite, sphare, dumbbell, and their photocatalytic properties, Adv. Funct. Mater., vol. 18, pp.1922-1928, (2008).
DOI: 10.1002/adfm.200701468
Google Scholar
[7]
S. Rajagopal, D. Nataraj, D. Mangalaraj, Yahia Djaoued, Jacques Robichaud, O. Yu. Khyzhun, Controlled growth of WO3 nanostructures with three different morphologies and their structural, optical, and photodecomposition studies, Nanoscale Res. Lett., vol. 4, pp.1335-1342, (2009).
DOI: 10.1007/s11671-009-9402-y
Google Scholar
[8]
A.M. -de la Cruz, D.S. Martínez, E.L. Cuéllar, Synthesis and characterization of WO3 nanoparticles prepared by the precipitation method: Evalution of photocatalytic activity under vis-irradiation, Solid State Sci., vol. 12, pp.88-94, (2010).
DOI: 10.1016/j.solidstatesciences.2009.10.010
Google Scholar
[9]
E. Rossinyol, A. Prim, E. Pellicer, J. Arbiol, F. Hernández-Ramírez, F. Peiró, A. Cornet, J.R. Morante, L.A. Solovyov, Bozhi Tian, Tu Bo and Dongyuan Zhao, Synthesis and characterization of chromium-doped mesoporous tungsten oxide for gas-sensing applications, Adv. Funct. Mater., vol. 17, pp.1801-1806, (2007).
DOI: 10.1002/adfm.200600722
Google Scholar
[10]
K.J. Lethy, D. Beena, R. Vinod Kumar, V.P. Mahadevan Pillai, V. Ganesan, V. Sathe, D.M. Phase, Nanostructured tungsten oxide thin films by reactive pulsed laser deposition technique, Appl. Phys. A, vol. 91, pp.637-649, (2008).
DOI: 10.1007/s00339-008-4492-4
Google Scholar
[11]
Shibin Sun, Yimin Zhao, Yongde Xia, Zengda Zou, Guanghui Min and Yanqiu Zhu, Bundled tungsten oxide nanowires under thermal processing, Nanotechnology, vol. 19, p.305709, (2008).
DOI: 10.1088/0957-4484/19/30/305709
Google Scholar
[12]
V.V. Atuchin and B.I. Kidyarov, Classification and search for novel binary acentric molybdate and wolframate crystals, J. Korean Cryst. Growth Cryst. Technol., vol. 12, pp.323-328, (2002).
Google Scholar
[13]
V.V. Atuchin, B.I. Kidyarov and N.V. Pervukhina, Phenomenological modeling and design of new acentric crystal for optoelectronics, Comput. Mater. Sci., vol. 30, pp.411-418, (2004).
DOI: 10.1016/j.commatsci.2004.03.013
Google Scholar
[14]
B.I. Kidyarov and V.V. Atuchin, Universal crystal classification system Point symmetry – physical property, Ferroelectrics, vol. 360, pp.96-99, (2007).
DOI: 10.1080/00150190701516244
Google Scholar
[15]
B.I. Kidyarov and V.V. Atuchin, Interrelationship of micro- and macro-structure and physical properties of binary acentric oxide ferroelastic and paraelastic crystals, Ferroelectrics, vol. 360, pp.104-110, (2007).
DOI: 10.1080/00150190701517523
Google Scholar
[16]
S. Rivier, X. Mateos, V. Petrov, U. Griebner, Y.E. Romanyuk, C.N. Borca, F. Gardillou, M. Pollnau, Tm: KY(WO4)2 waveguide laser, Opt. Express, vol. 15, pp.5885-5892, (2007).
DOI: 10.1364/oe.15.005885
Google Scholar
[17]
M. Pollnau, Y.E. Romanyuk, F. Gardillou, C.N. Borca, U. Griebner, S. Rivier and V. Petrov, Double tungstate lasers: From bulk toward on-chip integrated waveguide devices, IEEE J. Select. Topics Quant. Elect., vol. 13, pp.661-671, (2007).
DOI: 10.1109/jstqe.2007.896094
Google Scholar
[18]
S. Garcia-Revilla, R. Valiente, Y.E. Romanyuk, M. Pollnau, Temporal dynamics of upconversion luminescence in Er3+, Yb3+ co-doped crystalline KY(WO4)2 thin films, J. Luminescence, vol. 128, pp.934-936, (2009).
DOI: 10.1016/j.jlumin.2007.12.025
Google Scholar
[19]
O. Yu. Khyzhun, Yu.M. Solonin and V.D. Dobrovolsky, Electronic structure of hexagonal tungsten trioxide: XPS, XES, and XAS studies, J. Alloys Compd., vol. 320, pp.1-6, (2001).
DOI: 10.1016/s0925-8388(00)01454-7
Google Scholar
[20]
V.V. Atuchin, V.G. Kesler, N. Yu. Maklakova, L.D. Pokrovsky, Core level spectroscopy and RHEED analysis of KGd(WO4)2 surface, Solid State Commun., vol. 133, pp.347-351, (2005).
DOI: 10.1016/j.ssc.2004.11.042
Google Scholar
[21]
V.L. Bekenev, O. Yu. Khyzhun, V.V. Atuchin, Electronic structure of monoclinic a-KY(WO4)2 tungstate as determined from first-principles FP-LAPW calculations and X-ray spectroscopy studies, J. Alloys Compd., vol. 485, pp.51-58, (2009).
DOI: 10.1016/j.jallcom.2009.06.112
Google Scholar
[22]
V.V. Atuchin, T.A. Gavrilova, V.G. Kostrovsky, L.D. Pokrovsky and I.B. Troitskaia, Morphology and structure of hexagonal MoO3 nanorods, Inorg. Mater. vol. 44, pp.622-627, (2008).
DOI: 10.1134/s0020168508060149
Google Scholar
[23]
C.V. Ramana, V.V. Atuchin, I.B. Troitskaia, S.A. Gromilov, V.G. Kostrovsky, G.B. Saupe, Low-temperature synthesis of morphology controlled metastable hexagonal molybdenum trioxide (MoO3), Solid State Commun., vol. 149, pp.6-9, (2009).
DOI: 10.1016/j.ssc.2008.10.036
Google Scholar
[24]
V.V. Atuchin, T.A. Gavrilova, S.A. Gromilov, V.G. Kostrovsky, L.D. Pokrovsky, I.B. Troitskaia, R.S. Vemuri, G. Carbajal-Franco and C.V. Ramana, Low-temperature chemical synthesis and microstructure analysis of GeO2 crystals with a-quartz structure, Cryst. Growth & Design, vol. 9, pp.1829-1832, (2009).
DOI: 10.1021/cg8010037
Google Scholar
[25]
O. Yu. Khyzhun and Yu.M. Solonin, Electronic structure of hexagonal hydrogen tungsten bronze HxWO3 nanoparticles, a prospective sensor material, Int. Sci. J. Alternat. Energy Ecology, vol. 6, pp.52-55, (2002).
Google Scholar
[26]
O. Yu. Khyzhun, T. Strunskus, S. Cramm and Yu.M. Solonin, Electronic structure of CuWO4: XPS, XES and NEXAFS studies, J. Alloys Compd. vol. 389, pp.14-20, (2005).
DOI: 10.1016/j.jallcom.2004.08.013
Google Scholar
[27]
V.V. Atuchin, V.G. Kesler, N. Yu. Maklakova, L.D. Pokrovsky and D.V. Sheglov, Core level spectroscopy and RHEED analysis of KGd0. 95Nd0. 05(WO4)2 surface, Eur. Phys. J. B, vol. 51, pp.293-300, (2006).
DOI: 10.1140/epjb/e2006-00208-8
Google Scholar
[28]
O. Yu. Khyzhun, V.L. Bekenev, Yu.M. Solonin, First-principles calculations and X-ray spectroscopy studies of the electronic structure of CuWO4, J. Alloys Compd., vol. 480, pp.184-189, (2009).
DOI: 10.1016/j.jallcom.2009.01.119
Google Scholar
[29]
S. Rajagopal, D. Nataraj, O. Yu. Khyzhun, Y. Djaoued, J. Robichaud, D. Mangalaraj, Hydrothermal synthesis and electronic properties of FeWO4 and CoWO4, J. Alloys Compd., vol. 493, pp.340-345, (2010).
DOI: 10.1016/j.jallcom.2009.12.099
Google Scholar
[30]
V.V. Atuchin, L.D. Pokrovsky, O. Yu. Khyzhun, A.K. Sinelnichenko and C.V. Ramana, Surface crystallography and electronic structure of potassium yttrium tungstate, J. Appl. Phys., vol. 104, p.033518, (2008).
DOI: 10.1063/1.2963957
Google Scholar