[1]
S.Y. Lee, Structural Equation Modeling: A Bayesian Approach, Wiley, (2007).
Google Scholar
[2]
J.G. Ibrahim, M.H. Chen and D. Sinha, Criterion based methods for Bayesian model assessment, Statistica Sinica, vol. 11, pp.419-443, (2001).
Google Scholar
[3]
S. Y. Lee and X.Y. Song, Bayesian model selection of nonlinear latent variable models with missing continuous and ordinal categorical data, British Journal of Mathematical and Statistical Psychology, vol 57, pp.131-150, (2004).
DOI: 10.1348/000711004849204
Google Scholar
[4]
M. H. Chen, D.K. Dey, and J.G. Ibrahim, J. G., Bayesian criterion based model assessment for categorical data, Biometrika, vol 91, pp.45-63, (2004).
DOI: 10.1093/biomet/91.1.45
Google Scholar
[5]
S. Geman, and D. Geman, Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 6, pp.721-741, (1984).
DOI: 10.1109/tpami.1984.4767596
Google Scholar
[6]
N. Metropolis, A.W. Rosenbluth , M.N. Rosenbluth, A.H. Teller, and E. Teller, Equations of state calculations by fast computing machine. Journal of Chemical Physics, vol. 21, pp.1087-1091, (1953).
DOI: 10.1063/1.1699114
Google Scholar
[7]
M. W.K. Hastings, Monte Carlo sampling methods using Markov chains and their application, Biometrika, vol. 57, pp.97-109, (1970).
DOI: 10.1093/biomet/57.1.97
Google Scholar
[8]
M.H. Chen, and Q.M. Shao, Monte Carlo estimation of Bayesian credible and HPD intervals, Journal of Computational and Graphical Statistics, vol. 8, pp.69-92, (1999).
DOI: 10.1080/10618600.1999.10474802
Google Scholar
[9]
B.W. Silverman, Density Estimation for statistics and data analysis,. London: Chapman and Hall, 1986. Fig 1. Calibration distributions in simulation study: (a) under Prior I, (b)under Prior II.
Google Scholar