[1]
T. W. Simpson, D. K. J. Lin, W. Chen, Sampling strategies for computer experiments: Design and analysis, International Journal of Reliability and Applications, vol. 2(3), pp.209-240, (2001).
Google Scholar
[2]
D. C. Montgomery, Design and Analysis of Experiments, Fourth Edition, John Wiley & Sons, New York, (1997).
Google Scholar
[3]
G. E. P. Box, N. R. Draper, Empirical model building and response surfaces, John Wiley & Sons, New York, (1987).
Google Scholar
[4]
R. H. Myers, D. C. Montgomery, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, John Wiley & Sons, New York, (1995).
Google Scholar
[5]
G. Wang,Z. Dong and P. Aitchison, Adaptive Response Surface Method — A Global Optimization Scheme for Computation-intensive Design Problems, Journal of Engineering Optimization, Vol. 33, No. 6, pp.707-734, (2001).
DOI: 10.1080/03052150108940940
Google Scholar
[6]
M. Smith, Neural Networks for Statistical Modeling, von Nostrand Reinhold, New York, (1993).
Google Scholar
[7]
J. Sacks, S.B. Schiller, W.J. Welch, Designs for computer experiments, Technometrics, Vol. 31, pp.41-47, (1989).
DOI: 10.1080/00401706.1989.10488474
Google Scholar
[8]
J. H. Friedman, Multivariate adaptive regression splines, The Annals of Statistics, Vol. 19, No. 1, pp.1-67, (1991).
Google Scholar
[9]
N. Dyn, D. Levin, and S. Rippa, Numerical procedures for surface Fitting of Scattered Data by Radial Basis Functions, SIAM Journal, Vol. 7, No. 2, pp.639-659, (1986).
DOI: 10.1137/0907043
Google Scholar
[10]
G. E. P. Box, K. B. Wilson, On the experimental attainment of optimal conditions, Journal of the Royal Statistical Society, Vol. Series B, 13, pp.1-38 (with Discussion), (1951).
Google Scholar
[11]
D. J. Finney, Fractional replication of factorial arrangements., Annals of Eugenics 12, 291–301, (1945).
DOI: 10.1111/j.1469-1809.1943.tb02333.x
Google Scholar
[12]
M.E. Johnson, L.M. Moore , D. Ylvisaker , Minimax and Maximin distance Designs, Journal of Statistical Planning and Inference, vol. 26, pp.131-148, (1990).
DOI: 10.1016/0378-3758(90)90122-b
Google Scholar
[13]
M. D. Morris, T. J. Mitchell, Exploratory designs for computer experiments, Journal of Statistical Planning and Inference, vol. 43, pp.381-402, (1995).
DOI: 10.1016/0378-3758(94)00035-t
Google Scholar
[14]
B.G.M. Husslage, G. Rennen, E.R. Dam, D. Hertog, D. Den, Space-filling latin hypercube designs for computer experiments, Center Discussion Paper 2006-18, Tilburg University, Netherlands. (2006).
DOI: 10.2139/ssrn.895464
Google Scholar
[15]
P. Audze, V. Eglais, New approach for planning out of experiments., Problems of Dynamics and Strengths, vol. 35, pp.104-107, (1977).
Google Scholar
[16]
M.D. McKay, R.J. Beckman, W.J. Conover, A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, vol. 16, pp.239-245, (1979).
DOI: 10.1080/00401706.1979.10489755
Google Scholar
[17]
F.M. Alam,K. R. McNaught, T. J. Ringrose, A comparison of experimental designs in the development of a neural network simulation metamodel., Simulation Modelling: Practice and Theory, 12(7-8), pp.559-578, (2004).
DOI: 10.1016/j.simpat.2003.10.006
Google Scholar
[18]
G. G. Wang , Adaptive Response Surface Method Using Inherited Latin Hypercube Design Points, Transactions of ASME, Journal of Mechanical Design, pp.210-220, (2003).
DOI: 10.1115/1.1561044
Google Scholar
[19]
L. Dixon, and G. Szegö, The global optimization problem: An Introduction. Toward Global Optimization, 2 Ed, North-Holland, New York, pp.1-15, (1978).
Google Scholar