[1]
F. Ozturk, S. Toros, S. Kilic. Evaluation of tensile properties of 5052 type aluminum- magnesium alloy at warm temperatures. Materials Science and Engineering 2008; 34: 95-98.
Google Scholar
[2]
Hanliang Zhu, A.K. Ghosh and K. Maruyam. Effect of cold rolling on microstructure and material properties of 5052 alloy sheet produced by continuous casting. Materials Science and Engineering 2006; 419: 119-121.
DOI: 10.1016/j.msea.2005.12.008
Google Scholar
[3]
R. Narayanasamy, R. Ravindran, K. Manonmaniand J. Satheesh. A crystallographic texture perspective formability investigation of aluminum 5052 alloy sheets at various annealing temperatures . Materials & Design 2009; 30: 1804-1817.
DOI: 10.1016/j.matdes.2008.09.011
Google Scholar
[4]
Yong-Jai KWON, Seong-Beom SHIM, Dong-Hwan PARK. Friction stir welding of 5052 aluminum alloy plates. Transactions of Nonferrous Metals Society of China 2009; 19: 23-27.
DOI: 10.1016/s1003-6326(10)60239-7
Google Scholar
[5]
M. Peel, A. Steuwer, M. Preuss, P. J. Withers. Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminum AA5083 friction stir welds. Acta Materialia 2003; 16: 4791- 4801.
DOI: 10.1016/s1359-6454(03)00319-7
Google Scholar
[6]
[M. jafarzadegan, F. Kargar, T. saeid, A. Abdollah-zadeh, and F. Malek. Effect of Friction Stir Welding Parameters on the Microstructures and Mechanical Properties of 304 Stainless Steels. Engineering of metallurgy. 2009; 30: 26-30.
DOI: 10.1016/j.matchar.2012.09.004
Google Scholar
[7]
Yutaka S. Sato , Yusuke Sugiura , Yohei Shoji , Seung Hwan C. Park , Hiroyuki Kokawa and Keisuke Ikeda. Post-weld formability of friction stir welded Al alloy 5052. Materials Science and Engineering 2004; 369: 138-143.
DOI: 10.1016/j.msea.2003.11.035
Google Scholar
[8]
R.S. Mishra, Z. Y. Ma, Friction stir welding and processing, Material science and Engineering, 2005; 50: 1-78.
Google Scholar
[9]
F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, oxford, UK. Elsevier 2004; 2.
Google Scholar
[10]
T. L. Tsai, P. L. Sun, P. W. Kao, and C. P. Chang. Microstructure and tensile properties of a commercial 5052 aluminum alloy processed by equal channel angular extrusion. Materials Science and Engineering 2003; 342: 144-151.
DOI: 10.1016/s0921-5093(02)00283-6
Google Scholar
[11]
W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch. P. Templesmith, C.J. Dawes, G.B. Patent Application No. 9125978. 8 (December 1991).
Google Scholar
[12]
C. J. Dawes, W.M. Thomas. Friction stir process welds aluminum alloys. Weld J 1996; 75: 41-5.
Google Scholar
[13]
W.M. Thomas, E.D. Nicholas, Friction stir welding for the transportation industries. Mater Des 1997; 18(4/6): 269-73.
Google Scholar
[14]
W.D. Lockwood, B. Tomaz, A.P. Reynolds. Mechanical response of friction stir welded AA 2024: experiment and modeling . Material science and engineering A 2002; 323: 348-53.
DOI: 10.1016/s0921-5093(01)01385-5
Google Scholar
[15]
Hakan Aydin, Ali Bayram, Agah Uguz, Kemal Sertan Akay. Tensile properties of friction stir welded joint of 2024 aluminum alloys in different heat-treated-state. Material and Design 2009; 30: 2211-21.
DOI: 10.1016/j.matdes.2008.08.034
Google Scholar
[16]
L. Zhou, H.J. Liu and Q.W. Liu. Effect of rotation speed on microstructure and mechanical properties of Ti–6Al–4V friction stir welded joints. Materials and Design 2010; 31: 2631-2636.
DOI: 10.1016/j.matdes.2009.12.014
Google Scholar
[17]
knipstrom . Ke, pekkari b. friction stir welding process goes commercial. Weld J 1997; 76: 55-7.
Google Scholar
[18]
Kwon. Y J, SHigematso. I, Saito. N. Production of ultra-fine grained aluminum alloy using friction stir process[J]. Mater Trans 2003, 44(7): 1343−1350.
DOI: 10.2320/matertrans.44.1343
Google Scholar