[1]
K. Kailasanath, G. Patnaik, and C. Li, Computational studies of pulse detonation engines: A Status Report, AIAA Paper, (1999).
DOI: 10.2514/6.1999-2634
Google Scholar
[2]
J. A. Nicholls, H. R. Wilkinson, and R. B. Morrison, Intermittent detonation as a thrust-producing mechanism, Jet Propulsion, 27(5), 534, (1957).
DOI: 10.2514/8.12851
Google Scholar
[3]
R. Zitoun, and D. Desbordes, Propulsive performances of pulsed detonations, Combustion Science and Technology, 144(1–6), 93, (1999).
DOI: 10.1080/00102209908924199
Google Scholar
[4]
E. Wintenberger, J. M. Austin, M. Cooper, S. Jackson, and J. E. Shepherd, Analytical model for the impulse of single-cycle pulse detonation tube, Journal of Propulsion and Power, 19(1), (2003).
DOI: 10.2514/2.6099
Google Scholar
[5]
S. A. Zhdan, V. V. Mitrofanov, and A. I. Sychev, Reactive impulse from the explosion of a gas mixture in a semi-infinite space. Combustion, Explosion and Shock Waves, 30(5), 657, (1994).
DOI: 10.1007/bf00755833
Google Scholar
[6]
K. P. Stanyukovich, "Unsteady Motion of Continuous Media, Pergamon, New York, 142–196, (1960).
Google Scholar
[7]
F. Ma, J. Choi, and V. Yang, Thrust Chamber Dynamics and Propulsive Performance of Single-tube Pulse Detonation Engines, AIAA paper 2004-0865, presented at the 42nd Aerospace Science Meeting & Exhibit, Reno – Nevada, 5-8, (2004).
DOI: 10.2514/6.2004-865
Google Scholar
[8]
J. E. Cannon, M. K. Alkam, and P. B. Butler, Efficiency of pulsed detonation thermal spraying. Journal of Thermal Spray Technology, 17(4), 456, (2008).
DOI: 10.1007/s11666-008-9202-4
Google Scholar
[9]
M. K. Alkam, P. B. Butler, Analysis of a pulsed detonation thermal spray applicator, Combustion Science and Technology, 159, 17, (2000).
DOI: 10.1080/00102200008935775
Google Scholar
[10]
P. V. Saravanan, D. S. R. Selvarajan, S. V. Joshi, and G. Sundararajan, Influence of process variables on the quality of detonation gun sprayed alumina coatings, Surface and Coatings Technology, 123, 44, (2000).
DOI: 10.1016/s0257-8972(99)00252-2
Google Scholar
[11]
K. Hsu, and A. Jemcov, Numerical Investigation of Detonation in Premixed Hydrogen-air Mixture: Assessment of Simplified Chemical Mechanisms, Technical Report AIAA-2000-2478 presented at the Fluids 2000 Conference and Exhibit, June 19-22, Denver, CO, (2000).
DOI: 10.2514/6.2000-2478
Google Scholar
[12]
A. K. Varma, U. C. Ashok, and V. B. Frediano, Studies of premixed laminar hydrogen-air flames using elementary and global kinetics models, Combustion and Flame, 64, 233, (1986).
DOI: 10.1016/0010-2180(86)90060-x
Google Scholar
[13]
R. Ishii, H. H. Fujimoto, and Y. Umeda, Experimental and numerical analysis of circular pulse jets, Journal of Fluid Mechanics, 392, 129, (1999).
DOI: 10.1017/s0022112099005303
Google Scholar
[14]
Fluent 6. 3 User's Guide. Fluent Inc. Lebanon, NH. Accessed through password protected website at: http: /www. fluentusers. com/fluent6326/doc/ori/html/ug/main_pre. htm.
Google Scholar
[15]
J. D. Anderson, Modern Compressible Flow: with historical perspective. 3rd ed., New York: McGraw-Hill, (2003).
Google Scholar
[16]
M-S Liou, A sequel to AUSM: AUSM+, Journal of Computational Physics, 129, 364, (1996).
DOI: 10.1006/jcph.1996.0256
Google Scholar
[17]
M. Dumbser, J-M Moschetta, and J. Gressier, A matrix stability analysis of the carbuncle phenomenon, Journal of Computational Physics, 197, 647, (2004).
DOI: 10.1016/j.jcp.2003.12.013
Google Scholar
[18]
K. K. Kuo, Principles of combustion. 2nd ed, New Jersey: John Wiley & Sons, (2005).
Google Scholar
[19]
P. B. Butler, R. G. Schmitt, RGEQUIL. The University of Iowa, (1995).
Google Scholar