[1]
J.C. Maxwell: A Treatise on Electricity and magnetism (Clarendon press, Oxford, Uk, 1873).
Google Scholar
[2]
S.U.S. Choi: Enhancing thermal conductivity of fluid with nanoparticles, developments and applications of non Newtonian flow, ASME, FED 231/MD 66, 99–105, (1995).
Google Scholar
[3]
H. Masuda, A. Ebata, K. Teramae and N. Hishinuma: Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersions of -Al2O3, SiO2, and TiO2 ultra-fine particles), Netsu Bussei (Japan), 4, p.227–233. (1993).
DOI: 10.2963/jjtp.7.227
Google Scholar
[4]
S. Lee, S.U.S. Choi, S. Li and J.A. Eastman: Measuring thermal conductivity of fluids containing oxide nanoparticles, J. of Heat Transfer, 121, pp.280-289, (1999).
DOI: 10.1115/1.2825978
Google Scholar
[5]
J. A. Eastman, S. U. S. Choi, S. Li, W. Yu and L.J. Thomson: Anomalously increased effective thermal conductivity of ethylene glycol based nanofluid containing copper nanoparticles, Appl. Phys. Lett., 78, pp.718-720, (2001).
DOI: 10.1063/1.1341218
Google Scholar
[6]
M. Akbari, A. Behzadmehr and F. Shahraki: Fully developed mixed convection in horizontal and inclined tubes with uniform heat flux using nanofluid, Int. J. of Heat and Fluid Flow, Volume 29, Issue 2, 545-556, (2008).
DOI: 10.1016/j.ijheatfluidflow.2007.11.006
Google Scholar
[7]
A. Akbarinia, A. Behzadmehr: Numerical study of laminar mixed convection of a nanofluid in horizontal curved tubes, Applied Thermal Engineering, Volume 27, Issues 8-9, 1327-1337, (2007).
DOI: 10.1016/j.applthermaleng.2006.10.034
Google Scholar
[8]
Y. M. Xuan, Q. Li: Investigation on convective heat transfer and flow features of nanofluids, J. Heat Transfer, 125, 151–155, (2003).
DOI: 10.1115/1.1532008
Google Scholar
[9]
Y. M. Xuan, Q. Li: Investigation on convective heat transfer and flow features of nanofluids, J. Heat Transfer, 125, 151–155, (2003).
DOI: 10.1115/1.1532008
Google Scholar
[10]
A. Behzadmehr, M. Saffar-Avval and N. Galanis: Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach, Int. J. Heat Fluid Flow, 28, 211–219, (2008).
DOI: 10.1016/j.ijheatfluidflow.2006.04.006
Google Scholar
[11]
S. Mirmasoumi, A. Behzadmehr: Numerical Study of Laminar Mixed Convection of a Nanofluid in a Horizontal Tube Using Two-phase Mixture Model, J. Applied Thermal engineering, 28, 717-727, (2008).
DOI: 10.1016/j.applthermaleng.2007.06.019
Google Scholar
[12]
S. Mirmasoumi, A. Behzadmehr: Effect of nanoparticles mean diameter on mixed convection heat transfer of a nanofluid in a horizontal tube, Int. J. Heat and Fluid Flow, 29 (2), 557-566, (2008).
DOI: 10.1016/j.ijheatfluidflow.2007.11.007
Google Scholar
[13]
S. Alikhani, A. Behzadmehr and M. Saffar-Avval: Numerical study of nanofluid mixed convection in a horizontal curved tube using two-phase approach, Heat and Mass Transfer, 47, 107-118, (2011).
DOI: 10.1007/s00231-010-0677-4
Google Scholar
[14]
G.S. Barozzi, E. Zanchini, and M. Mariotti: Experimental investigation of combined forced and free convection in horizontal and inclined tubes, Int. J. Meccanica, 20, pp.18-27, (1998).
DOI: 10.1007/bf02337057
Google Scholar
[15]
D. Choudhury and S.V. Patankar: Combined forced and free laminar convection in the entrance region of an inclined isothermal tube, ASME J. Heat Transfer Trans. 110, 901-909, (1988).
DOI: 10.1115/1.3250591
Google Scholar