[1]
Tice J, Song H, Lyon A, Ismagilov R, (2003), Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary numbers, Langmuir 19: 91273–9133.
DOI: 10.1021/la030090w
Google Scholar
[2]
M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo, D. T. Burke, (1998).
DOI: 10.1126/science.282.5388.484
Google Scholar
[3]
Cristini V, Tan Y, (2004), Theory and numerical simulation of droplet dynamics in complex flows-a review, Lab Chip 4: 25.
DOI: 10.1039/b403226h
Google Scholar
[4]
M. Prakash, and N. Gershenfeld, (2007), Microfluidic bubble logic, Science, 315, 832.
DOI: 10.1126/science.1136907
Google Scholar
[5]
O. Sybulski, P. Garstevki, (2010), Dynamic memory in a microfluidic system droplets traveling through a simple network of microchannels, Lab on a chip, 4, 484.
DOI: 10.1039/b912988j
Google Scholar
[6]
S. Sugiura, M. Nakajima, S. Iwamoto, and M. Seki, (2001), Interfacial tension driven monodispersed droplet formation from microfabricated channel array, Langmuir 17, 5562.
DOI: 10.1021/la010342y
Google Scholar
[7]
A. M. Ganan-Calvo, (1998), Generation of Steady Liquid Microthreads and Micron-Sized Monodisperse Sprays in Gas Streams, Phys Rev Lett. 80, 285.
DOI: 10.1103/physrevlett.80.285
Google Scholar
[8]
T. Thorsen, R.W. Roberts, F. H. Arnold, and S. R. Quake, (2001), Dynamic pattern formation in a vesicle-generating microfluidic device, Phys. Rev. Lett. 86, 4163.
DOI: 10.1103/physrevlett.86.4163
Google Scholar
[9]
S. L. Anna, N. Bontoux, and H. A. Stone, (2003), Formation of dispersions using flow focusing in microchannels, Appl. Phys. Lett. 82, 364.
DOI: 10.1063/1.1537519
Google Scholar
[10]
D. R. Link, S. L. Anna, D. A. Weitz, and H. A. Stone, (2004), Geometrically Mediated Breakup of Drops in Microfluidic Devices, DOI: 10. 1103, Phys Rev Lett . 92. 054503.
DOI: 10.1103/physrevlett.92.054503
Google Scholar
[11]
P. Urbant, A. Leshansky, and Yu. Halupovich, (2008), On the forced convective heat transport in a droplet-laden flow in microchannels, Microfluid. Nanofluid. 4, 533.
DOI: 10.1007/s10404-007-0211-2
Google Scholar
[12]
P. Urbant, (2006), Numerical simulations of drops in microchannels, M. Sc. thesis, Technion.
Google Scholar
[13]
R. Gupta, D. F. Fletcher, and B. S. Haynes, (2009), On the CFD modeling of Taylor flow in microchannels , Chemical Engineering Science 64, 2941-2950.
DOI: 10.1016/j.ces.2009.03.018
Google Scholar
[14]
Ahmad Bedram, Ali Moosavi, (2010), Numerical Investigation of droplets breakup in microfluidic T-junction, International Conference on Physics Science and Technology ICPST, Hong Kong, China, Paper ID: S066.
Google Scholar
[15]
A. M. Leshansky, L. M. Pismen, (2009), Breakup of drops in a microfluidic T-junction, Physics of Fluids 21, 023303.
DOI: 10.1063/1.3078515
Google Scholar
[16]
F. P. Bretherton, (1961), The motion of long bubbles in tubes, J. Fluid Mech, 166, 10.
Google Scholar
[17]
Brackbill JU, Kothe DB, Zemach C, (1992), A continuum method for modeling surface tension, J. Comp Phys, 100: 335–354.
DOI: 10.1016/0021-9991(92)90240-y
Google Scholar
[18]
Renardy Y, (2007), The effects of confinement and inertia on the production of droplets, Rheol Acta 46: 521–529.
DOI: 10.1007/s00397-006-0150-y
Google Scholar
[19]
G. Karniadakis, A. Beskok, N. Aluru, (2004), Microflows and Nanoflows Fundamentals and Simulation, Springer.
Google Scholar