Breakup of Droplets in Micro and Nanofluidic T-Junctions

Article Preview

Abstract:

We employ numerical simulations to investigate the breakup of droplets in micro-and nanoscale T junctions which are used to produce small droplets from a large droplet. A Volume Of Fluid (VOF) method was used and for verifying the accuracy of simulation the results compared with two analytical researches. Our results reveal that breakup time and breakup length of the droplets play important roles in handling these systems optimally. Our results also indicate that for nanoscale T-junctions by increasing the capillary number the performance increases while for the micro-scale systems there is a specific capillary number for which the system is in its optimum condition.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3673-3678

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Tice J, Song H, Lyon A, Ismagilov R, (2003), Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary numbers, Langmuir 19: 91273–9133.

DOI: 10.1021/la030090w

Google Scholar

[2] M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo, D. T. Burke, (1998).

DOI: 10.1126/science.282.5388.484

Google Scholar

[3] Cristini V, Tan Y, (2004), Theory and numerical simulation of droplet dynamics in complex flows-a review, Lab Chip 4: 25.

DOI: 10.1039/b403226h

Google Scholar

[4] M. Prakash, and N. Gershenfeld, (2007), Microfluidic bubble logic, Science, 315, 832.

DOI: 10.1126/science.1136907

Google Scholar

[5] O. Sybulski, P. Garstevki, (2010), Dynamic memory in a microfluidic system droplets traveling through a simple network of microchannels, Lab on a chip, 4, 484.

DOI: 10.1039/b912988j

Google Scholar

[6] S. Sugiura, M. Nakajima, S. Iwamoto, and M. Seki, (2001), Interfacial tension driven monodispersed droplet formation from microfabricated channel array, Langmuir 17, 5562.

DOI: 10.1021/la010342y

Google Scholar

[7] A. M. Ganan-Calvo, (1998), Generation of Steady Liquid Microthreads and Micron-Sized Monodisperse Sprays in Gas Streams, Phys Rev Lett. 80, 285.

DOI: 10.1103/physrevlett.80.285

Google Scholar

[8] T. Thorsen, R.W. Roberts, F. H. Arnold, and S. R. Quake, (2001), Dynamic pattern formation in a vesicle-generating microfluidic device, Phys. Rev. Lett. 86, 4163.

DOI: 10.1103/physrevlett.86.4163

Google Scholar

[9] S. L. Anna, N. Bontoux, and H. A. Stone, (2003), Formation of dispersions using flow focusing in microchannels, Appl. Phys. Lett. 82, 364.

DOI: 10.1063/1.1537519

Google Scholar

[10] D. R. Link, S. L. Anna, D. A. Weitz, and H. A. Stone, (2004), Geometrically Mediated Breakup of Drops in Microfluidic Devices, DOI: 10. 1103, Phys Rev Lett . 92. 054503.

DOI: 10.1103/physrevlett.92.054503

Google Scholar

[11] P. Urbant, A. Leshansky, and Yu. Halupovich, (2008), On the forced convective heat transport in a droplet-laden flow in microchannels, Microfluid. Nanofluid. 4, 533.

DOI: 10.1007/s10404-007-0211-2

Google Scholar

[12] P. Urbant, (2006), Numerical simulations of drops in microchannels, M. Sc. thesis, Technion.

Google Scholar

[13] R. Gupta, D. F. Fletcher, and B. S. Haynes, (2009), On the CFD modeling of Taylor flow in microchannels , Chemical Engineering Science 64, 2941-2950.

DOI: 10.1016/j.ces.2009.03.018

Google Scholar

[14] Ahmad Bedram, Ali Moosavi, (2010), Numerical Investigation of droplets breakup in microfluidic T-junction, International Conference on Physics Science and Technology ICPST, Hong Kong, China, Paper ID: S066.

Google Scholar

[15] A. M. Leshansky, L. M. Pismen, (2009), Breakup of drops in a microfluidic T-junction, Physics of Fluids 21, 023303.

DOI: 10.1063/1.3078515

Google Scholar

[16] F. P. Bretherton, (1961), The motion of long bubbles in tubes, J. Fluid Mech, 166, 10.

Google Scholar

[17] Brackbill JU, Kothe DB, Zemach C, (1992), A continuum method for modeling surface tension, J. Comp Phys, 100: 335–354.

DOI: 10.1016/0021-9991(92)90240-y

Google Scholar

[18] Renardy Y, (2007), The effects of confinement and inertia on the production of droplets, Rheol Acta 46: 521–529.

DOI: 10.1007/s00397-006-0150-y

Google Scholar

[19] G. Karniadakis, A. Beskok, N. Aluru, (2004), Microflows and Nanoflows Fundamentals and Simulation, Springer.

Google Scholar