[1]
M. Sitti, Survey of Nanomanipulation Systems, IEEE Nanotechnology Conference, (2001).
Google Scholar
[2]
J.A. Stroscio and D.M. Eigler, Atomic and Molecular Manipulation with the Scanning Tunneling Microscope, Science, Vol 254, pp.1322-1326, (1996).
DOI: 10.1126/science.254.5036.1319
Google Scholar
[3]
T. Junno, K. Deppert and L. Montelius, Controlled Manipulation of Nanoparticles with an Atomic Force Microscope, Appl. Phys. Lett, Vol 66, 3627-3629, (1995).
DOI: 10.1063/1.113809
Google Scholar
[4]
D. M Schaefer, R. Reifenberger, Fabrication of two-dimensional of nanometer –size clusters with the atomic force microscope, Appl. Phys. Lett, Vol 66, 1012-1014, (1995).
DOI: 10.1063/1.113589
Google Scholar
[5]
M. R Falvo, G Clary, A. Hesler and S Paulson, Nanomanipulation experiments exploring friction and mechanical properties of carbon nanotube, Micros Microanal, 4, 504-512, (1999).
DOI: 10.1017/s1431927698980485
Google Scholar
[6]
M. Guthold, M.R. Falvo, W.G. Mathhews, and S. Paulson, Controlled Manipulation of Molecular Samples with the NanoManipulation, IEEE/ASME Trans. On Mechatronics, 189-198, (2000).
DOI: 10.1109/3516.847092
Google Scholar
[7]
M. Sitti and H. Hashimoti, Controlled Pushing of Nanoparticles: Modeling and Experiments, IEEE/ASME Trans. On Mechatronics, 199-211, (2000).
DOI: 10.1109/3516.847093
Google Scholar
[8]
A. Tafazzoli, M. Sitti, Dynamic behavior and simulation of nanoparticle sliding during nanoprobe based positioning, ASME International Mechanical Engineering Congress, (2004).
DOI: 10.1115/imece2004-62470
Google Scholar
[9]
R. T. Fukuda, F. Arai and L. Dong, Assembly of Nanodevices with Carbon Nanotubes through Nanorobotic Manipulations, Proceeding of The IEEE, VOL. 91, NO 11, (2003).
DOI: 10.1109/jproc.2003.818334
Google Scholar
[10]
E. W. Wong, P. E. Sheehan, and C. M. Lieber, Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes, Science, vol. 277, p.1971–1975, (1997).
DOI: 10.1126/science.277.5334.1971
Google Scholar
[11]
H. W. C. Postma, A. Sellmeijer, and C. Dekker, Manipulation and imaging of individual single-walled carbon nanotubes with an atomic force microscope, Adv. Mater., vol. 12, p.1299–1302, (2000).
DOI: 10.1002/1521-4095(200009)12:17<1299::aid-adma1299>3.0.co;2-o
Google Scholar
[12]
Z. Jiangbo, L. Guangyong and X. Ning, Modeling and Control of Active End Effector for the AFM Based Nano Robotic Manipulators, International Conference on Robotics and Automation IEEE, (2005).
DOI: 10.1109/robot.2005.1570113
Google Scholar
[13]
L. Lianqing ,X. Ning , L. Yilun, Z. Jiangbo, and L. Guangyong, Real-time Position Error Detecting in Nanomanipulation Using Kalman Filter, Proceedings of the 7th IEEE International Conference on Nanotechnology, Hong Kong, (2007).
DOI: 10.1109/nano.2007.4601149
Google Scholar
[14]
L. Lianqing, Y. Peng, T. Xiaojun, W. Yuechao, D. Zaili and Xi Ning, Force Analysis of Top-Down Forming CNT Electrical Connection Using Nanomanipulation Robot, IEEE International Conference on Mechatronics and Automation, 113-117, (2006).
DOI: 10.1109/icma.2006.257462
Google Scholar
[15]
W. T Thomson, Theory of Vibration with Applications, Unwin Hyman, (1988).
Google Scholar
[16]
S. Salapaka and M. Dahleh, A model or friction in Atomic Force Microscopy, proceedings of American Control Conference, Chicago, Illinois, pp.2102-2107, (2000).
DOI: 10.1109/acc.2000.879572
Google Scholar