Mixed Convective Heat Transfer Flow of Nanofluid past a Permeable Vertical Flat Plate with Magnetic Effects: A Finite Element Study

Article Preview

Abstract:

Steady, two dimensional mixed convection laminar boundary layer flow of incompressible nanofluid along a permeable vertical semi-infinite flat plate with magnetic field effects has been investigated numerically. The resulting govering equations (obtained from the boussinesq) with associated boundary conditions are solved, using a robust, extensively validated, Galerkin Finite Element Method for different types of spherical shaped metal oxide nanoparticles with two different ratios of the nanolayer thickness to the original particle radius (0.02 or 0.1). The effects of the parameters governing the problems are discussed and shown graphically. The present study is of immediate interest in next-generation solar film collectors, heat exchangers technology, material processing exploiting vertical surfaces and all those processes which are highly affected with heat transfer.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3679-3687

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, in Develpments and Applications of Non-Newtonian flows, D.A. Siginer and H.P. Wang, eds., ASME, FED-Vol. 231/MD-Vol. 66, Oct. 1995, pp.99-105.

Google Scholar

[2] J. Buongiorno, Convective transport in nanofluids, ASME J. Heat Transfer, Vol. 128, March 2006, pp.240-250, doi: 10. 1115/1. 215083.

DOI: 10.1115/1.2150834

Google Scholar

[3] S.K. Das, S. Choi, W. Yu and T. Pardeep, Nanofluids: Science and Technology, Wiley Interscience, New Jersey , (2007).

Google Scholar

[4] J. Eastman, S.U.S. Choi, S. Lib , W. Yu and L.J. Thompson, Anomalously increased effective thermal conductivities of ethylene-glycol based nanofluids containing copper nanoparticles, Appl. Phys. Lett., Vol. 78, Feb 2001, pp.718-720.

DOI: 10.1063/1.1341218

Google Scholar

[5] C.J. Ho, M.W. Chen and Z.W. Li , Numerical simulation of natural convection of nanofluid in a square enclosure: Effects due to uncertainties of viscosity and thermal conductivity, Int. J. Heat Transfer, Vol. 51, Aug 2008, pp.4506-4516.

DOI: 10.1016/j.ijheatmasstransfer.2007.12.019

Google Scholar

[6] A.V. Kuznetsov and D.A. Nield, Natural convection boundary layer of a nanofluid past a vertical plate, Int. J. Thermal Sciences, Vol. 49, Feb 2010, pp.243-247. doi: 10. 1016/j. ijthermalsci. 2009. 07. 015.

DOI: 10.1016/j.ijthermalsci.2009.07.015

Google Scholar

[7] W.A. Khan and I. Pop, Boundary layer flow of a nanofluid past a stretching sheet, Int. J. Heat and Mass Transfer, Vol. 53, May 2010, pp.2477-2483, doi: 10. 1016/j. ijheatmasstransfer. 2010. 01. 032.

DOI: 10.1016/j.ijheatmasstransfer.2010.01.032

Google Scholar

[8] N. Bachok, A. Ishak and I. Pop, Boundary layer flow of nanofluid over a moving surface in a flowing fluid, Int J. Thermal Sciences, Vol. 46, Sept 2007, pp.739-744, doi: 10. 1016/j. ijthermalsci. 2010. 01. 026.

DOI: 10.1016/j.ijthermalsci.2010.01.026

Google Scholar

[9] A.J. Chamkha, H.S. Takhar and G. Nath, Mixed convection flow over a vertical plate with localized heating(cooling) , magnetic field an suction/ injection, Heat Mass Transf, Vol. 40, July 2004, pp.835-841. doi: 10. 1007/s00231-003-0465-5.

DOI: 10.1007/s00231-003-0465-5

Google Scholar

[10] O. Aydin and A. Kaya, Radiation effects MHD mixed convection flow about a permeable vertical plate, Heat Mass Transfer, Vol. 45, July 2008, pp.239-249, doi: 10. 1007/s00231-008-0428-y.

DOI: 10.1007/s00231-008-0428-y

Google Scholar

[11] M.A. Azim, A.A. Mamun, M.M. Rahman, Viscous Joule heating MHD-conjugate heat transfer for a vertical flat plate in the presence of heat generation, Int Comm. in Heat and Mass Transfer, Vol. 37, July 2010, pp.666-674.

DOI: 10.1016/j.icheatmasstransfer.2010.02.002

Google Scholar

[12] M.A.A. Hamad, I. Pop and A.I. Md Ismail, Magnetic field effects on free convection flow of a nanofluid past a vertical semi-infinite flat plate, Nonlinear Analysis: Real World Applications, 2010, in press, doi: 10. 1016/j. nonrwa. 2010. 09. 014.

DOI: 10.1016/j.nonrwa.2010.09.014

Google Scholar

[13] J.N. Reddy, An Introduction to the Finite element method, McGraw- Hill Book Co., New York, (1985).

Google Scholar

[14] A.V. Kuznetsov, D.A. Nield, Boundary layer treatment of forced convection over a wedge with an attached porous substrate, J. Porous media, Vol. 9, 2006, pp.683-694, doi: 10. 1615/JPorMedia. v9. i7. 70.

DOI: 10.1615/jpormedia.v9.i7.70

Google Scholar

[15] K. Kahvaci, Buoyancy driven heat transfer of nanofluids in titled enclosure, ASME J. of Heat Transfer, Vol. 132, June 2010, pp.062501-12, doi: 0. 1115/1. 4000744. TABLE I. Comparision of results for reduced nusselt number Pr Kuznetsov and Nield.

DOI: 10.1115/1.4000744

Google Scholar

[14] Aydin et al.

Google Scholar

[10] Present results 0. 01 - 0. 051437 0. 059621 0. 1 0. 1580 0. 148123 0. 157901 1 0. 3320 0. 332000 0. 331980 10 0. 7300 0. 727801 0. 727802 100 1. 5700 1. 573141 1. 573143 Figure 2. Dimentionless velocity (a) and temperature (b) profiles for different mixed convection parameter (Ri)while Pr= 6. 2 and M=1. 0 Figure 3. Numerical values of Skin friction coefficient (a) and Nusselt number (b) profiles for different Ri while Pr= 6. 2 and M=1. 0 Figure 4. Dimentionless velocity (a) and temperature (b) profiles for different magnetic parameter (M)while Pr= 6. 2 and Ri=1. 0 Figure 5. Numerical values of Skin friction coefficient (a) and Nusselt number (b) profiles for different M while Pr= 6. 2 and Ri=1. 0. Figure 6. Numerical values of Nusselt number (a) for different suction/injection parameter while Pr=6. 2, Ri=1. 0 and M=1. 0 and Average Nusselt number (b) for different types of nanoparticle.

DOI: 10.7554/elife.02670.015

Google Scholar