[1]
S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, in Develpments and Applications of Non-Newtonian flows, D.A. Siginer and H.P. Wang, eds., ASME, FED-Vol. 231/MD-Vol. 66, Oct. 1995, pp.99-105.
Google Scholar
[2]
J. Buongiorno, Convective transport in nanofluids, ASME J. Heat Transfer, Vol. 128, March 2006, pp.240-250, doi: 10. 1115/1. 215083.
DOI: 10.1115/1.2150834
Google Scholar
[3]
S.K. Das, S. Choi, W. Yu and T. Pardeep, Nanofluids: Science and Technology, Wiley Interscience, New Jersey , (2007).
Google Scholar
[4]
J. Eastman, S.U.S. Choi, S. Lib , W. Yu and L.J. Thompson, Anomalously increased effective thermal conductivities of ethylene-glycol based nanofluids containing copper nanoparticles, Appl. Phys. Lett., Vol. 78, Feb 2001, pp.718-720.
DOI: 10.1063/1.1341218
Google Scholar
[5]
C.J. Ho, M.W. Chen and Z.W. Li , Numerical simulation of natural convection of nanofluid in a square enclosure: Effects due to uncertainties of viscosity and thermal conductivity, Int. J. Heat Transfer, Vol. 51, Aug 2008, pp.4506-4516.
DOI: 10.1016/j.ijheatmasstransfer.2007.12.019
Google Scholar
[6]
A.V. Kuznetsov and D.A. Nield, Natural convection boundary layer of a nanofluid past a vertical plate, Int. J. Thermal Sciences, Vol. 49, Feb 2010, pp.243-247. doi: 10. 1016/j. ijthermalsci. 2009. 07. 015.
DOI: 10.1016/j.ijthermalsci.2009.07.015
Google Scholar
[7]
W.A. Khan and I. Pop, Boundary layer flow of a nanofluid past a stretching sheet, Int. J. Heat and Mass Transfer, Vol. 53, May 2010, pp.2477-2483, doi: 10. 1016/j. ijheatmasstransfer. 2010. 01. 032.
DOI: 10.1016/j.ijheatmasstransfer.2010.01.032
Google Scholar
[8]
N. Bachok, A. Ishak and I. Pop, Boundary layer flow of nanofluid over a moving surface in a flowing fluid, Int J. Thermal Sciences, Vol. 46, Sept 2007, pp.739-744, doi: 10. 1016/j. ijthermalsci. 2010. 01. 026.
DOI: 10.1016/j.ijthermalsci.2010.01.026
Google Scholar
[9]
A.J. Chamkha, H.S. Takhar and G. Nath, Mixed convection flow over a vertical plate with localized heating(cooling) , magnetic field an suction/ injection, Heat Mass Transf, Vol. 40, July 2004, pp.835-841. doi: 10. 1007/s00231-003-0465-5.
DOI: 10.1007/s00231-003-0465-5
Google Scholar
[10]
O. Aydin and A. Kaya, Radiation effects MHD mixed convection flow about a permeable vertical plate, Heat Mass Transfer, Vol. 45, July 2008, pp.239-249, doi: 10. 1007/s00231-008-0428-y.
DOI: 10.1007/s00231-008-0428-y
Google Scholar
[11]
M.A. Azim, A.A. Mamun, M.M. Rahman, Viscous Joule heating MHD-conjugate heat transfer for a vertical flat plate in the presence of heat generation, Int Comm. in Heat and Mass Transfer, Vol. 37, July 2010, pp.666-674.
DOI: 10.1016/j.icheatmasstransfer.2010.02.002
Google Scholar
[12]
M.A.A. Hamad, I. Pop and A.I. Md Ismail, Magnetic field effects on free convection flow of a nanofluid past a vertical semi-infinite flat plate, Nonlinear Analysis: Real World Applications, 2010, in press, doi: 10. 1016/j. nonrwa. 2010. 09. 014.
DOI: 10.1016/j.nonrwa.2010.09.014
Google Scholar
[13]
J.N. Reddy, An Introduction to the Finite element method, McGraw- Hill Book Co., New York, (1985).
Google Scholar
[14]
A.V. Kuznetsov, D.A. Nield, Boundary layer treatment of forced convection over a wedge with an attached porous substrate, J. Porous media, Vol. 9, 2006, pp.683-694, doi: 10. 1615/JPorMedia. v9. i7. 70.
DOI: 10.1615/jpormedia.v9.i7.70
Google Scholar
[15]
K. Kahvaci, Buoyancy driven heat transfer of nanofluids in titled enclosure, ASME J. of Heat Transfer, Vol. 132, June 2010, pp.062501-12, doi: 0. 1115/1. 4000744. TABLE I. Comparision of results for reduced nusselt number Pr Kuznetsov and Nield.
DOI: 10.1115/1.4000744
Google Scholar
[14]
Aydin et al.
Google Scholar
[10]
Present results 0. 01 - 0. 051437 0. 059621 0. 1 0. 1580 0. 148123 0. 157901 1 0. 3320 0. 332000 0. 331980 10 0. 7300 0. 727801 0. 727802 100 1. 5700 1. 573141 1. 573143 Figure 2. Dimentionless velocity (a) and temperature (b) profiles for different mixed convection parameter (Ri)while Pr= 6. 2 and M=1. 0 Figure 3. Numerical values of Skin friction coefficient (a) and Nusselt number (b) profiles for different Ri while Pr= 6. 2 and M=1. 0 Figure 4. Dimentionless velocity (a) and temperature (b) profiles for different magnetic parameter (M)while Pr= 6. 2 and Ri=1. 0 Figure 5. Numerical values of Skin friction coefficient (a) and Nusselt number (b) profiles for different M while Pr= 6. 2 and Ri=1. 0. Figure 6. Numerical values of Nusselt number (a) for different suction/injection parameter while Pr=6. 2, Ri=1. 0 and M=1. 0 and Average Nusselt number (b) for different types of nanoparticle.
DOI: 10.7554/elife.02670.015
Google Scholar