[1]
Ghia, U., Ghia, K.N. and Shin, C.Y. (1982). High Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, Journal of Computational Physics, 48(3), 387-411.
DOI: 10.1016/0021-9991(82)90058-4
Google Scholar
[2]
P. Shankar, M. Deshpande, Fluid mechanics in the driven cavity, Annual Review of Fluid Mechanics 32 (2000) 93-136.
DOI: 10.1146/annurev.fluid.32.1.93
Google Scholar
[3]
M. Cheng, K.C. Hung, Vortex structure of steady flow in a rectangular cavity, Computers & Fluids 35 (2006) 1046-1062.
DOI: 10.1016/j.compfluid.2005.08.006
Google Scholar
[4]
Povitsky, Three-dimensional flow in a cavity at yaw, Nonlinear Analysis 63 (2005) 1573-1584.
Google Scholar
[5]
T.W.H. Sheu, S.F. Tsai, Flow topology in a steady three-dimensional lid-driven cavity, Computers & Fluids 31 (2002) 911-934.
DOI: 10.1016/s0045-7930(01)00083-4
Google Scholar
[6]
A.M. Fudhail, N. A. C. Sidik, M. Z. M. Rody, H. M. Zahir, and M.T. Musthafah, World Academy of Science, Engineering and Technology.
Google Scholar
[7]
S. Perron, S. Boivin, J.M. Herard, A finite volume method to solve the 3D Navier- Stokes equations on unstructured collocated meshes, Computers & Fluids 33 (2004) 1305-1333.
DOI: 10.1016/j.compfluid.2003.10.006
Google Scholar
[8]
H.C. Elman, V. Howle, J.N. Shadid, R.S. Tuminaro, A parallel block multi-level preconditioner for the 3D incompressible Navier-Stokes equations, Journal of Computational Physics 187 (2003) 504-523.
DOI: 10.1016/s0021-9991(03)00121-9
Google Scholar
[9]
J. Zhang, Numerical simulation of 2D square driven cavity using fourth-order compact finite difference schemes, Computers and Mathematics with Applications 45 (2003) 43-52.
DOI: 10.1016/s0898-1221(03)80006-8
Google Scholar
[10]
F. Auteri, N. Parolini, L. Quarapelle, Numerical investigation on the stability of singular driven cavity flow, Journal of Computational Physics 183 (2002) 1-25.
DOI: 10.1006/jcph.2002.7145
Google Scholar
[11]
R. Mei, W. Shyy, D. Yu, L.S. Luo, Lattice Boltzmann method for 3-D flows with curved boundary, Journal of Computational Physics 161 (2000) 680-699.
DOI: 10.1006/jcph.2000.6522
Google Scholar
[12]
J.A. Wright, R.W. Smith, An edge-based method for incompressible Navier-Stokes equations on polygonal meshes, Journal of Computational Physics 169 (2001) 24-43.
DOI: 10.1006/jcph.2001.6705
Google Scholar
[13]
C.H. Liu, D.Y.C. Leung, Development of a finite element solution for the unsteady Navier-Stokes equations using projection method and fractional-θ-scheme, Computer Methods in Applied Mechanics and Engineering 190 (2001) 4301-4317.
DOI: 10.1016/s0045-7825(00)00320-0
Google Scholar
[14]
S. Boivin, F. Cayre, J.M. Herard, A finite volume method to solve the Navier-Stokes equations for incompressible flows on unstructured meshes, International Journal of Thermal Science 39 (2000) 806-825.
DOI: 10.1016/s1290-0729(00)00276-3
Google Scholar
[15]
P. Neofytou, A 3rd order upwind finite volume method for generalised Newtonian fluid flows, Advances in Engineering Software 36 (2005) 664-680.
DOI: 10.1016/j.advengsoft.2005.03.011
Google Scholar
[16]
C.H. Tai, Y. Zhao, K.M. Liew, Parallel-multigrid computation of unsteady incompres- sible viscous flows using a matrix-free implicit method and high-resolution characteristics-based scheme, Computer Methods in Applied Mechanics and Engineering 194 (2005).
DOI: 10.1016/j.cma.2004.09.010
Google Scholar
[17]
S. Albensdoer, H.C. Kuhlmann, Accurate three-dimensional lid-driven cavity flow, Journal of Computational Physics 206 (2005) 536-558.
DOI: 10.1016/j.jcp.2004.12.024
Google Scholar
[18]
S. Albensdoer, H.C. Kuhlmann, Three-dimensional instability of two counter- rotating vortices in a rectangular cavity driven by parallel wall motion, European Journal of Mechanics B/Fluids 21 (2002) 307-316.
DOI: 10.1016/s0997-7546(02)01188-3
Google Scholar
[19]
H.C. Kuhlmann, M. Wanschura, H.J. Rath, Flow in two-sided lid-driven cavities: non-uniqueness, instabilities, and cellular structures, Journal Of Fluid Mechanics 336 (1997) 267-299.
DOI: 10.1017/s0022112096004727
Google Scholar
[20]
H.C. Kuhlmann, M. Wanschura, H.J. Rath, Elliptic instability in two-sided lid-driven cavity flow, European Journal of Mechanics B/Fluids 17 (1998) 561-569.
DOI: 10.1016/s0997-7546(98)80011-3
Google Scholar
[21]
C.H. Blohm, H.C. Kuhlmann, The two-sided lid-driven cavity: experiments on stationary and time-dependent flows, Journal Of Fluid Mechanics 450 (2002) 67-95.
DOI: 10.1017/s0022112001006267
Google Scholar
[22]
S. Albensoeder, H.C. Kuhlmann, Linear stability of rectangular cavity flows driven by anti-parallel motion of two facing walls, Journal Of Fluid Mechanics 458 (2002).
DOI: 10.1017/s0022112002007917
Google Scholar
[23]
153-180.
Google Scholar
[24]
S. Albensoeder, H.C. Kuhlmann, H.J. Rath, Multiplicity of steady two-dimensional.
Google Scholar
[25]
plows in two-sided lid-driven cavities, Theoretical And Computational Fluid.
Google Scholar
[26]
Dynamics 14 (2001) 223-241.
Google Scholar
[27]
Migeon,G. Pineau,A. Texier, Threedimensionality development in sidestandard parallelepipedic lid-driven cavities at Re = 1000, Journal of Fluids and Structures 17(2003) 717-738.
DOI: 10.1016/s0889-9746(03)00009-4
Google Scholar
[28]
Azwadi, C.S.N. and Tanahashi, T. (2008). Simplified finite difference thermal lattice Boltzmann method, International Journal of Modern Physics B, 22(22), 3865-3876.
DOI: 10.1142/s0217979208048619
Google Scholar
[29]
Lax, P.D. and Wendroff, B. (1960).
Google Scholar