Boiling and Convective Heat Transfer Characteristics of Nanofluids

Article Preview

Abstract:

Nanofluids have attracted great interest from researchers worldwide because of their reported superior thermal performance and many potential applications. However, there are many controversies and inconsistencies in reported experimental results of thermal conductivity, convective heat transfer coefficient and critical heat flux of nanofluids. In this paper, two major features of nanofluids, which are boiling and convective heat transfer characteristics are presented besides critically reviewing recent research and development on these areas of nanofluids.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

393-399

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. M. Yang and J. R. Maa, Boiling of suspension of solid particles in water, Int. J. Heat Mass Transfer, vol. 27, 1984, p.145–147.

DOI: 10.1016/0017-9310(84)90248-5

Google Scholar

[2] H. Masuda, A. Ebata, K. Teramae and N. Hishinuma, Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of g-Al2O3, SiO2, and TiO2 ultra-fine particles), Netsu Bussei, vol. 4, 1993, pp.227-233.

DOI: 10.2963/jjtp.7.227

Google Scholar

[3] S. U. S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, Proc. ASME Int. Mech. Eng. Cong. Expos., San Francisco, USA, (1995).

Google Scholar

[4] S. Lee, S. U. S. Choi, S. Li and J. A. Eastman, Measuring thermal conductivity of fluids containing oxide nanoparticles, J. Heat Transf., vol. 121, 1999, pp.280-289.

DOI: 10.1115/1.2825978

Google Scholar

[5] S. M. S. Murshed, K. C. Leong and C. Yang, Enhanced thermal conductivity of TiO2-water based nanofluids, Int. J. Therm. Sci., vol. 44, 2005, pp.367-373.

DOI: 10.1016/j.ijthermalsci.2004.12.005

Google Scholar

[6] S. M. S. Murshed, K. C. Leong and C. Yang, Investigations of thermal conductivity and viscosity of nanofluids, Int. J. Therm. Sci., vol. 47, 2008, pp.560-568.

DOI: 10.1016/j.ijthermalsci.2007.05.004

Google Scholar

[7] W. Yu, D. M. France, J. L. Routbort and S. U. S. Choi, Review and comparison of nanofluid thermal conductivity and heat transfer enhancements, Heat Transfer Eng., vol. 29, 2008, pp.432-460.

DOI: 10.1080/01457630701850851

Google Scholar

[8] S. M. S. Murshed, K. C. Leong and C. Yang, Thermophysical and electrokinetic properties of nanofluids- A critical review, Appl. Therm. Eng., Vol. 28, 2008, pp.2109-2125.

DOI: 10.1016/j.applthermaleng.2008.01.005

Google Scholar

[9] S. M. You, J. H. Kim, and K. M. Kim, Effect of nanoparticles on critical heat flux of water in pool boiling of heat transfer, Appl. Phys. Lett., vol. 83, 2003, p.3374–3376.

DOI: 10.1063/1.1619206

Google Scholar

[10] D. Milanova and R. Kumar, Heat transfer behavior of silica nanoparticles in pool boiling experiment, J. Heat Transf., vol. 130, 2008, pp.042401-6.

DOI: 10.1115/1.2787020

Google Scholar

[11] D. Wen and Y. Ding, Experimental investigation into the pool boiling heat transfer of aqueous based alumina nanofluids, J. Nanopart. Res., vol. 7, 2005, p.265–274.

DOI: 10.1007/s11051-005-3478-9

Google Scholar

[12] S. K. Das, N. Putra and W. Roetzel, Pool boiling characterization of nano-fluids, Int. J. Heat Mass Transfer, vol. 46, 2003, p.851–862.

DOI: 10.1016/s0017-9310(02)00348-4

Google Scholar

[13] S. Witharana, Boiling of refrigerants on enhanced surfaces and boiling of nanofluids, Ph.D. thesis, Royal Institute of Technology, Sweden, (2003).

Google Scholar

[14] P. Vassallo, R. Kumar and S. D'Amico, Pool boiling heat transfer experiments in silica-water nano-fluids, Int. J. Heat Mass Transfer, vol. 47, 2004, p.407–411.

DOI: 10.1016/s0017-9310(03)00361-2

Google Scholar

[15] I. C. Bang and S. H. Chang, Boiling heat transfer performance and phenomena of Al2O3-water nano-fluids from a plain surface in a pool, Int. J. Heat Mass Transfer, vol. 48, 2005, p.2407–2419.

DOI: 10.1016/j.ijheatmasstransfer.2004.12.047

Google Scholar

[16] N. G. Prakash, K. B. Anoop, G. Sateesh, S. K. Das, Effect of surface orientation on pool boiling heat transfer of nanoparticle suspensions, Int. J. Multiphase Flow, vol. 34, 2008, pp.145-160.

DOI: 10.1016/j.ijmultiphaseflow.2007.08.004

Google Scholar

[17] M. Chopkar, A. K. Das, I. Manna and P. K. Das, Pool boiling heat transfer characteristics of ZrO2–water nanofluids from a flat surface in a pool, Heat Mass Transfer, vol. 44, 2008, p.999–1004.

DOI: 10.1007/s00231-007-0345-5

Google Scholar

[18] L-C. Lv and Z-H. Liu, Boiling characteristics in small vertical tubes with closed bottom for nanofluids and nanoparticles-suspensions, Heat and Mass Transfer, vol. 45, 2008, pp.1-9.

DOI: 10.1007/s00231-008-0397-1

Google Scholar

[19] R. Kathiravan, R. Kumar, A. Gupta, R. Chandra and P. K. Jain, Pool boiling characteristics of carbon nanotube based nanofluids over a horizontal tube, J. Thermal Sci. Eng. Appl., vol. 1, 2009, pp.022001-7.

DOI: 10.1115/1.4000042

Google Scholar

[20] B. C. Pak and Y. I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp. Heat Transfer, vol. 11, 1998, pp.151-170.

DOI: 10.1080/08916159808946559

Google Scholar

[21] J. A. Eastman, S. U. S. Choi, S. Li, G. Soyez, L. J. Thompson and R. J. Dimelfi, Novel thermal properties of nanostructured materials, Mater. Sci. Forum, vol. 312-314, 1999, pp.629-634.

DOI: 10.4028/www.scientific.net/msf.312-314.629

Google Scholar

[22] Y. Xuan and Q. Li, Investigation on convective heat transfer and flow features of nanofluids, J. Heat Transfer, vol. 125, 2003, pp.151-155.

DOI: 10.1115/1.1532008

Google Scholar

[23] D. Wen and Y. Ding, Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions, " Int. J. Heat Mass Transfer, vol. 47, 2004, pp.5181-5188.

DOI: 10.1016/j.ijheatmasstransfer.2004.07.012

Google Scholar

[24] S. Z. Heris, S. G. Etemad and M. S. Esfahany, Experimental investigation of oxide nanofluids under laminar flow convective heat transfer, Int. Comm. Heat Mass Transfer, vol. 33, 2006, 529-535.

DOI: 10.1016/j.icheatmasstransfer.2006.01.005

Google Scholar

[25] J. -Y. Jung, H. -S. Oh, and H. -Y. Kwak, Forced convective heat transfer of nanofluids in microchannels, Proc. ASME Int. Mech. Eng. Cong. Expos. (IMECE 2006), Chicago, USA, (2006).

DOI: 10.1115/imece2006-13851

Google Scholar

[26] Y. Ding, H. Alias, D. Wen, and A. R. Williams, Heat transfer of aqueous suspensions of carbon nanotubes, Int. J. Heat Mass Transfer, vol. 49, 2006, pp.240-250.

DOI: 10.1016/j.ijheatmasstransfer.2005.07.009

Google Scholar

[27] W. Y. Lai, B. Duculescu, P. E. Phelan, and R. S. Prasher, Convective heat transfer with nanofluids in a single 1. 02-mm tube, Proc. ASME Int. Mech. Eng. Cong. Expos. (IMECE 2006), Chicago, USA, (2006).

DOI: 10.1115/imece2006-14132

Google Scholar

[28] W. Williams, J. Buongiorno, and L-W. Hu, Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (nanofluids) in horizontal tubes, J. Heat Transfer, vol. 130, 2008, p.1.

DOI: 10.1115/1.2818775

Google Scholar

[29] K. S. Hwang, S. P. Jang, and S. U. S. Choi, Flow and convective heat transfer characteristics of water-based Al2O3 nanofluids in fully developed laminar flow regime, Int. J. Heat Mass Transfer, vol. 52, 2009, p.193–199.

DOI: 10.1016/j.ijheatmasstransfer.2008.06.032

Google Scholar

[30] H. Xie, Y. Li, and W. Yu, Intriguingly high convective heat transfer enhancement of nanofluid coolants in laminar flows, Phys. Lett. A, vol. 374, 2010, pp.2566-2568.

DOI: 10.1016/j.physleta.2010.04.026

Google Scholar

[31] S. M. S. Murshed, D. Milanova and R. Kumar, An experimental study of surface tension-dependent pool boiling characteristics of carbon nanotubes-nanofluids, Proc 7th Int. ASME Conf. Nanochannels, Microchannels and Minichannels, Pohang, South Korea, (2009).

DOI: 10.1115/icnmm2009-82204

Google Scholar

[32] S. M. S. Murshed, K. C. Leong and C. Yang and N. T. Nguyen, Convective heat transfer characteristics of aqueous TiO2 nanofluids under laminar flow conditions, Int. J. Nanosci., vol. 7, 2008, pp.325-331.

DOI: 10.1142/s0219581x08005493

Google Scholar