[1]
Y. M. Yang and J. R. Maa, Boiling of suspension of solid particles in water, Int. J. Heat Mass Transfer, vol. 27, 1984, p.145–147.
DOI: 10.1016/0017-9310(84)90248-5
Google Scholar
[2]
H. Masuda, A. Ebata, K. Teramae and N. Hishinuma, Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of g-Al2O3, SiO2, and TiO2 ultra-fine particles), Netsu Bussei, vol. 4, 1993, pp.227-233.
DOI: 10.2963/jjtp.7.227
Google Scholar
[3]
S. U. S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, Proc. ASME Int. Mech. Eng. Cong. Expos., San Francisco, USA, (1995).
Google Scholar
[4]
S. Lee, S. U. S. Choi, S. Li and J. A. Eastman, Measuring thermal conductivity of fluids containing oxide nanoparticles, J. Heat Transf., vol. 121, 1999, pp.280-289.
DOI: 10.1115/1.2825978
Google Scholar
[5]
S. M. S. Murshed, K. C. Leong and C. Yang, Enhanced thermal conductivity of TiO2-water based nanofluids, Int. J. Therm. Sci., vol. 44, 2005, pp.367-373.
DOI: 10.1016/j.ijthermalsci.2004.12.005
Google Scholar
[6]
S. M. S. Murshed, K. C. Leong and C. Yang, Investigations of thermal conductivity and viscosity of nanofluids, Int. J. Therm. Sci., vol. 47, 2008, pp.560-568.
DOI: 10.1016/j.ijthermalsci.2007.05.004
Google Scholar
[7]
W. Yu, D. M. France, J. L. Routbort and S. U. S. Choi, Review and comparison of nanofluid thermal conductivity and heat transfer enhancements, Heat Transfer Eng., vol. 29, 2008, pp.432-460.
DOI: 10.1080/01457630701850851
Google Scholar
[8]
S. M. S. Murshed, K. C. Leong and C. Yang, Thermophysical and electrokinetic properties of nanofluids- A critical review, Appl. Therm. Eng., Vol. 28, 2008, pp.2109-2125.
DOI: 10.1016/j.applthermaleng.2008.01.005
Google Scholar
[9]
S. M. You, J. H. Kim, and K. M. Kim, Effect of nanoparticles on critical heat flux of water in pool boiling of heat transfer, Appl. Phys. Lett., vol. 83, 2003, p.3374–3376.
DOI: 10.1063/1.1619206
Google Scholar
[10]
D. Milanova and R. Kumar, Heat transfer behavior of silica nanoparticles in pool boiling experiment, J. Heat Transf., vol. 130, 2008, pp.042401-6.
DOI: 10.1115/1.2787020
Google Scholar
[11]
D. Wen and Y. Ding, Experimental investigation into the pool boiling heat transfer of aqueous based alumina nanofluids, J. Nanopart. Res., vol. 7, 2005, p.265–274.
DOI: 10.1007/s11051-005-3478-9
Google Scholar
[12]
S. K. Das, N. Putra and W. Roetzel, Pool boiling characterization of nano-fluids, Int. J. Heat Mass Transfer, vol. 46, 2003, p.851–862.
DOI: 10.1016/s0017-9310(02)00348-4
Google Scholar
[13]
S. Witharana, Boiling of refrigerants on enhanced surfaces and boiling of nanofluids, Ph.D. thesis, Royal Institute of Technology, Sweden, (2003).
Google Scholar
[14]
P. Vassallo, R. Kumar and S. D'Amico, Pool boiling heat transfer experiments in silica-water nano-fluids, Int. J. Heat Mass Transfer, vol. 47, 2004, p.407–411.
DOI: 10.1016/s0017-9310(03)00361-2
Google Scholar
[15]
I. C. Bang and S. H. Chang, Boiling heat transfer performance and phenomena of Al2O3-water nano-fluids from a plain surface in a pool, Int. J. Heat Mass Transfer, vol. 48, 2005, p.2407–2419.
DOI: 10.1016/j.ijheatmasstransfer.2004.12.047
Google Scholar
[16]
N. G. Prakash, K. B. Anoop, G. Sateesh, S. K. Das, Effect of surface orientation on pool boiling heat transfer of nanoparticle suspensions, Int. J. Multiphase Flow, vol. 34, 2008, pp.145-160.
DOI: 10.1016/j.ijmultiphaseflow.2007.08.004
Google Scholar
[17]
M. Chopkar, A. K. Das, I. Manna and P. K. Das, Pool boiling heat transfer characteristics of ZrO2–water nanofluids from a flat surface in a pool, Heat Mass Transfer, vol. 44, 2008, p.999–1004.
DOI: 10.1007/s00231-007-0345-5
Google Scholar
[18]
L-C. Lv and Z-H. Liu, Boiling characteristics in small vertical tubes with closed bottom for nanofluids and nanoparticles-suspensions, Heat and Mass Transfer, vol. 45, 2008, pp.1-9.
DOI: 10.1007/s00231-008-0397-1
Google Scholar
[19]
R. Kathiravan, R. Kumar, A. Gupta, R. Chandra and P. K. Jain, Pool boiling characteristics of carbon nanotube based nanofluids over a horizontal tube, J. Thermal Sci. Eng. Appl., vol. 1, 2009, pp.022001-7.
DOI: 10.1115/1.4000042
Google Scholar
[20]
B. C. Pak and Y. I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp. Heat Transfer, vol. 11, 1998, pp.151-170.
DOI: 10.1080/08916159808946559
Google Scholar
[21]
J. A. Eastman, S. U. S. Choi, S. Li, G. Soyez, L. J. Thompson and R. J. Dimelfi, Novel thermal properties of nanostructured materials, Mater. Sci. Forum, vol. 312-314, 1999, pp.629-634.
DOI: 10.4028/www.scientific.net/msf.312-314.629
Google Scholar
[22]
Y. Xuan and Q. Li, Investigation on convective heat transfer and flow features of nanofluids, J. Heat Transfer, vol. 125, 2003, pp.151-155.
DOI: 10.1115/1.1532008
Google Scholar
[23]
D. Wen and Y. Ding, Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions, " Int. J. Heat Mass Transfer, vol. 47, 2004, pp.5181-5188.
DOI: 10.1016/j.ijheatmasstransfer.2004.07.012
Google Scholar
[24]
S. Z. Heris, S. G. Etemad and M. S. Esfahany, Experimental investigation of oxide nanofluids under laminar flow convective heat transfer, Int. Comm. Heat Mass Transfer, vol. 33, 2006, 529-535.
DOI: 10.1016/j.icheatmasstransfer.2006.01.005
Google Scholar
[25]
J. -Y. Jung, H. -S. Oh, and H. -Y. Kwak, Forced convective heat transfer of nanofluids in microchannels, Proc. ASME Int. Mech. Eng. Cong. Expos. (IMECE 2006), Chicago, USA, (2006).
DOI: 10.1115/imece2006-13851
Google Scholar
[26]
Y. Ding, H. Alias, D. Wen, and A. R. Williams, Heat transfer of aqueous suspensions of carbon nanotubes, Int. J. Heat Mass Transfer, vol. 49, 2006, pp.240-250.
DOI: 10.1016/j.ijheatmasstransfer.2005.07.009
Google Scholar
[27]
W. Y. Lai, B. Duculescu, P. E. Phelan, and R. S. Prasher, Convective heat transfer with nanofluids in a single 1. 02-mm tube, Proc. ASME Int. Mech. Eng. Cong. Expos. (IMECE 2006), Chicago, USA, (2006).
DOI: 10.1115/imece2006-14132
Google Scholar
[28]
W. Williams, J. Buongiorno, and L-W. Hu, Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (nanofluids) in horizontal tubes, J. Heat Transfer, vol. 130, 2008, p.1.
DOI: 10.1115/1.2818775
Google Scholar
[29]
K. S. Hwang, S. P. Jang, and S. U. S. Choi, Flow and convective heat transfer characteristics of water-based Al2O3 nanofluids in fully developed laminar flow regime, Int. J. Heat Mass Transfer, vol. 52, 2009, p.193–199.
DOI: 10.1016/j.ijheatmasstransfer.2008.06.032
Google Scholar
[30]
H. Xie, Y. Li, and W. Yu, Intriguingly high convective heat transfer enhancement of nanofluid coolants in laminar flows, Phys. Lett. A, vol. 374, 2010, pp.2566-2568.
DOI: 10.1016/j.physleta.2010.04.026
Google Scholar
[31]
S. M. S. Murshed, D. Milanova and R. Kumar, An experimental study of surface tension-dependent pool boiling characteristics of carbon nanotubes-nanofluids, Proc 7th Int. ASME Conf. Nanochannels, Microchannels and Minichannels, Pohang, South Korea, (2009).
DOI: 10.1115/icnmm2009-82204
Google Scholar
[32]
S. M. S. Murshed, K. C. Leong and C. Yang and N. T. Nguyen, Convective heat transfer characteristics of aqueous TiO2 nanofluids under laminar flow conditions, Int. J. Nanosci., vol. 7, 2008, pp.325-331.
DOI: 10.1142/s0219581x08005493
Google Scholar