Photocatalytic Hydrogen Generation of CuO and WO3 Co-Loaded TiO2 Nanotubes

Article Preview

Abstract:

TiO2 nanotube was prepared by anodization method. CuO and WO3 were loaded by wet impregnation method. The microstructure, phase characteristic and photoelectrocatalytic hydrogen generation performance were studied. The annealed samples were soaked in a mixture solution containing tungstic acid and Cu (NO3)2 and then post-annealed to fabricate Cu-loaded TiO2 nanotube. The obtained samples were characterized by SEM, EDX, XRD and the photoelectrocatalytic hydrogen generation under UV illumination was measured and compared.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3781-3785

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Fujishima, X. Zhang, D. A. Tryk, TiO2 photocatalysis and related surface phenomena, Surf. Scie Rep., vol. 63, 2008, p.515–582.

DOI: 10.1016/j.surfrep.2008.10.001

Google Scholar

[2] J. M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, P. Schmuki, TiO2 nanotubes: Self-organized electrochemical formation, properties and applications, Curr. Opin. Solid State Mater. Sci., vol. 11, 2007, pp.3-18.

DOI: 10.1016/j.cossms.2007.08.004

Google Scholar

[3] G. L. Mor, O. K. Varghese, M. Paulose, K. Shankar, C. A. Grimes, A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications, Sol. Energy Mater. Sol. Cells, vol. 90, 2006, p.2011-(2075).

DOI: 10.1016/j.solmat.2006.04.007

Google Scholar

[4] L. Sun, J. Li, C. L. Wang, S. F. Li, H. B. Chen, C. J. Lin, An electrochemical strategy of doping Fe3+ into TiO2 nanotube array films for enhancement in photocatalytic activity, Sol. Energy Mater. Sol. Cells, vol. 93, 2009, pp.1875-1880.

DOI: 10.1016/j.solmat.2009.07.001

Google Scholar

[5] J. M. Macak, B. G. Gong, M. Hueppe, and P. Schmuki, Filling of TiO2 nanotubes by self-doping and electrodeposition, Adv. Mater. , vol. 19, 2007, p.3027–3031.

DOI: 10.1002/adma.200602549

Google Scholar

[6] H. Zhao, Y. Chen, X. Quan, X. Ruan, Preparation of Zn-doped TiO2 nanotubes electrode and its application in pentachlorophenol photoelectrocatalytic degradation, Chin. Sci. Bull., vol. 52, 2007, pp.1456-1461.

DOI: 10.1007/s11434-007-0170-8

Google Scholar

[7] J. H. Park, O. O. Park, and S. W. Kim Photoelectrochemical water splitting at titanium dioxide nanotubes coated with tungsten trioxide, Appl. Phys. Lett., Vol. 89, 2006, p.163106.

DOI: 10.1063/1.2357878

Google Scholar

[8] A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, vol. 238, 1972, p.37–38.

DOI: 10.1038/238037a0

Google Scholar

[9] N. L. Wu, M. S. Lee, Enhanced TiO2 photocatalysis by Cu in hydrogen production from aqueous methanol solution, Int. J. Hydrogen Energy, vol. 29, 2004, pp.1601-1605.

DOI: 10.1016/j.ijhydene.2004.02.013

Google Scholar

[10] V. Gombac, L. Sordelli, T. Montini, J. J. Delgado, A. Adamski, G. Adami, M. Cargnello, S. Bernal and P. Fornasiero, CuOx-TiO2 photocatalysts for H2 production from ethanol and glycerol Solution, J. Phys. Chem. A, vol. 114, 2010, pp.3916-3925.

DOI: 10.1021/jp907242q

Google Scholar

[11] S. Xua and D. D. Sun, Significant improvement of photocatalytic hydrogen generation rate over TiO2 with deposited CuO, Int. J. Hydrogen Energy, Vol. 34, 2009, pp.6096-6104.

DOI: 10.1016/j.ijhydene.2009.05.119

Google Scholar