Nano Technology/Networks in Molecular Communication: An Advance Step of Electrical Communications

Article Preview

Abstract:

Till-date research in communications industry has mainly focused on systems based on electromagnetic propagation. However, in nanotechnology the scales are very minute, hence it needs further research that whether these concepts apply or not. So far, molecular communications research has studied the propagation of individual molecules between closely spaced transmitters and receivers as embedded in a fluid medium. Using these concepts, scientists are now investigating into nanomachines, nanomedicines, nanorobotics, and bio-chips which have enabled to further the computer science communications with biologically inspired algorithms. If timely parallels can be drawn between molecular communications and electrical communications there is potential for cross-learning and an opportunity to pioneer new developments. This paper aims to bring forth the key principles in molecular communication and their relationship to electrical communications as out-of-the-box philosophy for academicians and students.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3770-3776

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] http: /www. ece. gatech. edu/research/labs/bwn/nanos/ papers/long_range09. pdf.

Google Scholar

[2] R. Lacasa, Modeling the Molecular Communication Nanonetworks, Master Thesis Georgia Institute of Technology (2009).

Google Scholar

[3] Kadloor, S.; Adve, R.; , A Framework to Study the Molecular Communication System, Computer Communications and Networks, 2009. ICCCN 2009. Proceedings of 18th Internatonal Conference on, vol., no., pp.1-6, 3-6 Aug. (2009).

DOI: 10.1109/icccn.2009.5235217

Google Scholar

[4] A. Eckford, Timing Information Rates for Active Transport Molecular Communication, Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 2009, Volume 20, Part 1, 24-28.

DOI: 10.1007/978-3-642-04850-0_3

Google Scholar

[5] J. Govil, J. Govil, A. Nandra, Advances in Quantum Computing: Non Magnetic Resonance,  IEEE Region 3 Huntsville Section (IEEE SoutheastCon 2008), April 3-6, 2008, Huntsville, Albama, USA.

DOI: 10.1109/secon.2008.4494252

Google Scholar

[6] L. P. Giné , I.F. Akyildiz Molecular communication options for long range nanonetworks, Master Thesis Broadband Wireless Networking (BWN) Laboratory, School of Electrical and Computer Engineering, Georgia Institute of Technology, USA (2009).

DOI: 10.1016/j.comnet.2009.08.001

Google Scholar

[7] Cellware Manual. Systems Biology Group Bioinformatics Institute. http: /www. bii. a-star. edu. sg.

Google Scholar

[8] D.T. Gillespie, Exact Stochastic Simulation of Coupled Chemical Reactions, the Journal of Physical Chemistry, 81(25): 2340-2361, 1977. ).

DOI: 10.1021/j100540a008

Google Scholar

[9] M.A. Gibson and J. Bruck, Efficient Exact Stochastic Simulation of Chemical Systems with Many Species and Many Channels, The Journal of Physical Chemistry, A 104, 1876 (2000).

DOI: 10.1021/jp993732q

Google Scholar

[10] Network Tutorials, Molecular Communications, 2010 http: /www. networktutorials. info/net/what-is-molecular-communication. html.

Google Scholar

[11] Y. Moritani, S. Hiyama, T. Suda, Molecular communication for health care applications, in Proc. 4th Annu. IEEE conf. Pervasive Comput. Commun. Workshop, 2006, pp.553-557.

Google Scholar

[12] K. Kinosita, K. Adachi, and H. Itoh, Rotation of F1-ATPASE: How an ATP-driven molecular machine may work, Annu. Rev. Biophys. Biomol. Struct., vol. 33, p.245–268, (2004).

DOI: 10.1146/annurev.biophys.33.110502.132716

Google Scholar

[13] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular Biology of the Cell, 4th ed. London, U.K.: Garland Science, (2002).

Google Scholar

[14] Y. Moritani, S. Hiyama, andT. Suda, Molecular communication for health care applications, in Proc. 4th Annu. IEEE Conf. Pervasive Comput. Commun. Workshops, 2006, p.553–557.

DOI: 10.1109/percomw.2006.97

Google Scholar

[15] M. Moore, A. Enomoto, T. Suda, T. Nakano, and Y. Okaie, Molecular communication: New paradigm for communication among nano-scale biological machines, in The Handbook of Computer Networks. New York: Wiley, Nov. (2007).

DOI: 10.1002/9781118256107.ch67

Google Scholar

[16] S. Hiyama, T. Inoue, T. Shima, Y. Moritani, T. Suda, and K. Sutoh, Autonomous loading, transport, and unloading of specified cargoes by using DNA hybridization and biological motor-based motility, Small, vol. 4, 2008, p.410–415.

DOI: 10.1002/smll.200700528

Google Scholar

[17] J. A. Pelesko and D. H. Bernstein, Modeling MEMS and NEMS,. Boca Raton, FL: CRC Press, (2002).

Google Scholar

[18] M. L. Roukes, Nanoelectromechanical systems, in Proc. Tech. Dig. 2000 Solid State Sens. Actuator Workshop, Hilton Head Island, SC, 2000, vol, 6, p.4–8.

Google Scholar

[19] T. Head, M. Yamamura, and S. Gal, Aqueous computing: Writing on molecules, in Proc. Congr. Evol. Comp, Washington, DC, 1999, p.1006–1010.

Google Scholar

[20] M. B. Elowttz and S. Leibler, A synthetic oscillatory network of transcriptional regulators, Nature, vol. 403, 2000 , p.335–338.

DOI: 10.1038/35002125

Google Scholar

[21] D. Endy and R. Brent, Modeling cellular behavior, Nature, vol. 409, p.391–395, (2001).

Google Scholar

[22] D. Endy and R. Brent, Modeling cellular behavior, Nature, vol. 409, p.391–395, (2001).

Google Scholar

[23] J. E. Dueber, B. J. Yeh, R. P. Bhattacharyya, and W. A. Lim, Rewiring cell signaling: The logic and plasticity of eukaryotic protein circuitry, Curr. Opin. Struct. Biol., vol. 14, 2004, p.690–699.

DOI: 10.1016/j.sbi.2004.10.004

Google Scholar

[24] H. Kobayashi, M. Kærn,M. Araki, K. Chung, T. S. Gardner, C. R. Cantor, and J. J. Collins, Programmable cells: Interfacing natural and engineered gene networks, Proc. Nat. Acad Sci. U.S.A., vol. 101, 2004, p.8414–8419.

DOI: 10.1073/pnas.0402940101

Google Scholar

[25] L. You, R. S. Cox 3rd, R. Weiss, and F. H. Arnold, Programmed population control by cell-cell communication and regulated killing, Nature, vol. 428, 2004, p.868–871.

DOI: 10.1038/nature02491

Google Scholar

[26] P. W. K. Rothemund, Folding DNA to create nanoscale shapes and patterns, Nature, vol. 440, 2006, p.297–302.

DOI: 10.1038/nature04586

Google Scholar

[27] S. N. Watanabe, T. Nakano, A. Enomoto, M. J. Moore, and T. Suda, Self-organization in molecular communication, in Self-Organization Handbook. Tokyo, Japan: NTS Inc., (2008).

Google Scholar

[28] C. E. Shannon and W. Weaver, A Mathematical Model of Communication. Champaign, IL: Univ. Illinois Press, (1949).

Google Scholar

[29] Michael John Moore, Tatsuya Suda and Kazuhiro Oiwa Molecular Communication: Modeling Noise Effects on Information Rate, IEEE Transactions on Nanobioscience, Vol. 8, No. 2, Nune (2009).

DOI: 10.1109/tnb.2009.2025039

Google Scholar

[30] M. Moore, A. Enomoto, T. Suda, T. Nakano, and Y. Okaie, Molecular communication: New paradigm for communication among nano-scale biological machines, in The Handbook of Computer Networks. New York: Wiley, Nov. (2007).

DOI: 10.1002/9781118256107.ch67

Google Scholar

[31] Sachin Kadloor, Raviraj Adve A Framework to Study the Molecular Communication System, 2009 Proceedings of 18th International Conference on Computer Communications and Networks.

DOI: 10.1109/icccn.2009.5235217

Google Scholar

[32] NTT DoCoMo, Press Realease: NTT DoCoMo Demonstrates Molecular Delivery System for Molecular Communication http: /www. nttdocomo. com/pr/2008/001391. html.

Google Scholar

[33] J. Govil, J. Govil, N. Kaur, H. Kaur, An Examination of IPv4 and IPv6 Networks : Constraints and  Various Transition Mechanisms, IEEE Region 3 Huntsville Section (IEEE SoutheastCon 2008), April 3-6, 2008, Huntsville, Alabama, USA.

DOI: 10.1109/secon.2008.4494282

Google Scholar