One-Dimensional Harmonic Oscillator in Quantum Phase Space

Article Preview

Abstract:

Within the framework of the quantum phase space representation established by Torres-Vega and Frederick, we solve the rigorous solutions of the stationary Schrödinger equations for the one-dimensional harmonic oscillator by means of the quantum wave-mechanics method. The result shows that the wave mechanics and the matrix mechanics are equivalent in phase space, just as in position or momentum space.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3750-3754

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Bohm, Quantum Theory. New York: Prentice-Hall, (1951).

Google Scholar

[2] E. P. Wigner, Quantum corrections for thermodynamic equilibrium, Phys. Rev., vol. 40, pp.749-759, (1932).

Google Scholar

[3] K. Husimi, Some formal properties of the density matrix, Proc. Phys. Math. Soc. Japan, vol. 22, pp.264-271, (1940).

Google Scholar

[4] R. J. Glauber, The quantum theory of optical coherence, Phys. Rev., vol. 130, pp.2529-2535, (1963).

Google Scholar

[5] J. R. Klauder and B. S. Skagerstum, Coherent States. Singapore: World Scientific, (1985).

Google Scholar

[6] R. J. Glauber, Quantum Optics and Electronics. New York: Gordon and Breach, (1965).

Google Scholar

[7] P. Carruthers and F. Zachariasen, Quantum collision theory with phase-space distributions, Rev. Mod. Phys., vol. 55, pp.245-268, (1983).

DOI: 10.1103/revmodphys.55.245

Google Scholar

[8] F. E. Schroeck, Quantum Mechanics on Phase Space. Dordrecht: Kluwer Academic Publisher, (1996).

Google Scholar

[9] G. Torres-Vega and J. H. Frederick, Quantum mechanics in phase space: new approaches to the correspondence principle, J. Chem. Phys., vol. 93, pp.8862-8874, (1990).

DOI: 10.1063/1.459225

Google Scholar

[10] G. Torres-Vega and J. H. Frederick, A quantum mechanical representation in phase space, J. Chem. Phys., vol. 98, pp.3103-3120, (1993).

DOI: 10.1063/1.464085

Google Scholar

[11] Q. S. Li and X. G. Hu, On the quantum mechanical representation in phase space, Phys. Scripta, vol. 51, pp.417-422, (1995).

Google Scholar

[12] K. B. Møller, T. G. Jorgensen, and G. Torres-Vega, On coherent-state representations of quantum mechanics: wave mechanics in phase space, J. Chem. Phys., vol. 106, pp.7228-7240, (1997).

DOI: 10.1063/1.473684

Google Scholar

[13] X. G. Hu and Q. S. Li, Morse oscillator in a quantum phase-space representation: rigorous solutions, J. Phys. A: Gen. Math., vol. 32, pp.139-146, (1999).

DOI: 10.1088/0305-4470/32/1/015

Google Scholar

[14] X. G. Hu, Q. S. Li, and A. C. Tang, Exact treatment of reactive scattering in the Torres-Vega-Frederick quantum phase-space representation, Phys. Rev. A, vol. 52, pp.3780-3786, (1995).

DOI: 10.1103/physreva.52.3780

Google Scholar

[15] Q. S. Li and X. G. Hu, Quantum phase-space formulation for inelastic scattering of atom-diatomic molecules using the density operator, Chem. Soc. Faraday Trans., vol. 92, pp.1669-1680, (1996).

DOI: 10.1039/ft9969201669

Google Scholar

[16] M. Ban, Relative-state formulation of quantum systems, Phys. Rev. A, vol. 48, pp.3452-3460, (1993).

Google Scholar

[17] J. E. Harriman, A quantum state vector phase space representation, J. Chem. Phys., vol. 100, pp.3651-3663, (1994).

Google Scholar

[18] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Rev. Mod. Phys., vol. 71, pp.463-512, (1999).

DOI: 10.1103/revmodphys.71.463

Google Scholar

[19] L. I. Schiff. Quantum Mechanics. New York: McGraw-Hill, (1968).

Google Scholar