[1]
D. Bohm, Quantum Theory. New York: Prentice-Hall, (1951).
Google Scholar
[2]
E. P. Wigner, Quantum corrections for thermodynamic equilibrium, Phys. Rev., vol. 40, pp.749-759, (1932).
Google Scholar
[3]
K. Husimi, Some formal properties of the density matrix, Proc. Phys. Math. Soc. Japan, vol. 22, pp.264-271, (1940).
Google Scholar
[4]
R. J. Glauber, The quantum theory of optical coherence, Phys. Rev., vol. 130, pp.2529-2535, (1963).
Google Scholar
[5]
J. R. Klauder and B. S. Skagerstum, Coherent States. Singapore: World Scientific, (1985).
Google Scholar
[6]
R. J. Glauber, Quantum Optics and Electronics. New York: Gordon and Breach, (1965).
Google Scholar
[7]
P. Carruthers and F. Zachariasen, Quantum collision theory with phase-space distributions, Rev. Mod. Phys., vol. 55, pp.245-268, (1983).
DOI: 10.1103/revmodphys.55.245
Google Scholar
[8]
F. E. Schroeck, Quantum Mechanics on Phase Space. Dordrecht: Kluwer Academic Publisher, (1996).
Google Scholar
[9]
G. Torres-Vega and J. H. Frederick, Quantum mechanics in phase space: new approaches to the correspondence principle, J. Chem. Phys., vol. 93, pp.8862-8874, (1990).
DOI: 10.1063/1.459225
Google Scholar
[10]
G. Torres-Vega and J. H. Frederick, A quantum mechanical representation in phase space, J. Chem. Phys., vol. 98, pp.3103-3120, (1993).
DOI: 10.1063/1.464085
Google Scholar
[11]
Q. S. Li and X. G. Hu, On the quantum mechanical representation in phase space, Phys. Scripta, vol. 51, pp.417-422, (1995).
Google Scholar
[12]
K. B. Møller, T. G. Jorgensen, and G. Torres-Vega, On coherent-state representations of quantum mechanics: wave mechanics in phase space, J. Chem. Phys., vol. 106, pp.7228-7240, (1997).
DOI: 10.1063/1.473684
Google Scholar
[13]
X. G. Hu and Q. S. Li, Morse oscillator in a quantum phase-space representation: rigorous solutions, J. Phys. A: Gen. Math., vol. 32, pp.139-146, (1999).
DOI: 10.1088/0305-4470/32/1/015
Google Scholar
[14]
X. G. Hu, Q. S. Li, and A. C. Tang, Exact treatment of reactive scattering in the Torres-Vega-Frederick quantum phase-space representation, Phys. Rev. A, vol. 52, pp.3780-3786, (1995).
DOI: 10.1103/physreva.52.3780
Google Scholar
[15]
Q. S. Li and X. G. Hu, Quantum phase-space formulation for inelastic scattering of atom-diatomic molecules using the density operator, Chem. Soc. Faraday Trans., vol. 92, pp.1669-1680, (1996).
DOI: 10.1039/ft9969201669
Google Scholar
[16]
M. Ban, Relative-state formulation of quantum systems, Phys. Rev. A, vol. 48, pp.3452-3460, (1993).
Google Scholar
[17]
J. E. Harriman, A quantum state vector phase space representation, J. Chem. Phys., vol. 100, pp.3651-3663, (1994).
Google Scholar
[18]
F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Rev. Mod. Phys., vol. 71, pp.463-512, (1999).
DOI: 10.1103/revmodphys.71.463
Google Scholar
[19]
L. I. Schiff. Quantum Mechanics. New York: McGraw-Hill, (1968).
Google Scholar