[1]
J. A. Eastman, S. U. S. Choi, S. Li, and L. J. Thompson, Enhanced Thermal Conductivity through the Development of Nanofluids, Proc. Symp. Nanophase and Nanocomposite Mater. II, vol. 457, 1997, pp.2-11.
Google Scholar
[2]
S. Lee, S. U. S. Choi, and J. A. Eastman, Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles, ASME J. Heat Transfer, vol. 121, 1999, pp.280-289.
DOI: 10.1115/1.2825978
Google Scholar
[3]
X. Wang, X. Xu, and S. U. S. Choi, Thermal Conductivity of Nanoparticle-Fluid Mixture, J. Thermophysics and Heat Transfer, vol. 13, 1999, pp.474-480.
DOI: 10.2514/2.6486
Google Scholar
[4]
H. Q. Xie, J. C. Wang, T. G. Xi, Y. Liu, F. Ai, and Q. R. Wu, Thermal, Conductivity Enhancement of Suspensions Containing Nanosized Alumina Particles, Journal of Applied Physics, vol. 91, 2002, pp.4568-4572.
DOI: 10.1063/1.1454184
Google Scholar
[5]
S. K. Das, N. Putra, P. Thiesen, and W. Roetzel, Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids, ASME J. Heat Transfer, vol. 125, 2003, pp.567-574.
DOI: 10.1115/1.1571080
Google Scholar
[6]
H. E. Patel, S. K. Das, T. Sundararajan, A. S. Nair, B. George, and T. Pradeep, Thermal conductivities of naked and monolayer protected metal nanoparticle base nanofluids manifestation of anomalous enhancement and chemical effects, Appl. Phys. Lett., vol. 83, 2003, pp.2931-2933.
DOI: 10.1063/1.1602578
Google Scholar
[7]
S. P. Jang, and S. U. S. Choi, Role of Brownian motion in the enhanced thermal conductivity of nanofluids, Appl. Phys. Lett., vol. 84, 2004, pp.4316-4318.
DOI: 10.1063/1.1756684
Google Scholar
[8]
D. Wen, and Y. Ding, Experimental investigation into convective heat transfer of nanofluid at the entrance region under laminar flow conditions, Int. J. Heat Mass Transfer, vol. 47, 2004, pp.5181-5188.
DOI: 10.1016/j.ijheatmasstransfer.2004.07.012
Google Scholar
[9]
Y. Ding, H. Alias, D. Wen, and R. A. Williams, Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids), Int. J. Heat Mass Transfer, vol. 49, 2006, pp.240-250.
DOI: 10.1016/j.ijheatmasstransfer.2005.07.009
Google Scholar
[10]
J. Buongiorno, Convective transport in nanofluids, ASME J. Heat Transfer, vol. 128, 2006, pp.240-250.
DOI: 10.1115/1.2150834
Google Scholar
[11]
K. S. Hwang, S. P. Jang, and S. U. S. Choi, Flow and Convective Heat Transfer Characteristics of Water-Based Al2O3 Nanofluids in Fully Developed Laminar Flow Regime, Int. J. Heat Mass Transfer, vol. 52, 2009, pp.193-199.
DOI: 10.1016/j.ijheatmasstransfer.2008.06.032
Google Scholar
[12]
Y. He, Y. Jin, H. Chen, Y. Ding, D. Cang, and H. Lu, Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe, Int. J. Heat Mass Transfer, vol. 50, 2007, p.2272–2281.
DOI: 10.1016/j.ijheatmasstransfer.2006.10.024
Google Scholar
[13]
S. Z. Heris, M. N. Esfahany, and S. G. Etemad, Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube, Int. J. Heat Fluid Flow, vol. 28, 2007, p.203–210.
DOI: 10.1016/j.ijheatfluidflow.2006.05.001
Google Scholar
[14]
B. C. Pak, and Y. I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particle, Experimental Heat Transfer, vol. 11, 1998, pp.151-170.
DOI: 10.1080/08916159808946559
Google Scholar
[15]
Y. Xuan, and Q. Li, Investigation on convective heat transfer and flow features of nanofluids, ASME J. Heat Transfer, vol. 125, 2003, pp.151-155.
DOI: 10.1115/1.1532008
Google Scholar
[16]
W. Duangthongsuk, and S. Wongwises, Heat transfer enhancement and pressure drop characteristics of TiO2–water nanofluid in a double-tube counter flow heat exchanger, Int. J. Heat Mass Transfer, vol. 52, 2009, p.2059–(2067).
DOI: 10.1016/j.ijheatmasstransfer.2008.10.023
Google Scholar
[17]
U. Rea, T. McKrell, L. Hu, and J. Buongiorno, Laminar convective heat transfer and viscous pressure loss of alumina–water and zirconia–water nanofluids, Int. J. Heat Mass Transfer, vol. 52, 2009, p.2042–(2048).
DOI: 10.1016/j.ijheatmasstransfer.2008.10.025
Google Scholar
[18]
W. Williams, J. Buongiorno, and L. Hu, Experimental Investigation of Turbulent Convective Heat Transfer and Pressure Loss of Alumina/Water and Zirconia/Water Nanoparticle Colloids (Nanofluids) in Horizontal Tubes, J. Heat Transfer, vol. 130, 2008, p.042412.
DOI: 10.1115/1.2818775
Google Scholar
[19]
J. H. Lee, K. S. Hwang, S. P. Jang, B. H. Lee, J. H. Kim, S. U. S. Choi, and C. J. Choi, Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 Nanoparticles, Int. J. Heat Mass Transfer, vol. 51, 2008, pp.2651-2656.
DOI: 10.1016/j.ijheatmasstransfer.2007.10.026
Google Scholar
[20]
R. H. Müller, Zetapotential und Partikelladung in der Laborpraxis, 1st Ed., Stuttgart: Wissenschaftliche Verlagsgesellschaft (1996).
Google Scholar
[21]
H. J. Kim, S. H. Lee, H. M. Lim, and S. P. Jang Effect of Particle Shape on Thermal Conductivities and Suspension Stabilities of Water-based Al2O3 Nanofluids, unpublished.
Google Scholar
[22]
Y. Xuan, and W. Roetzel, Conceptions for Heat Transfer Correlation of Nanofluids, Int. J. Heat Mass Transfer, vol. 43, 2000, p.3701–3707.
DOI: 10.1016/s0017-9310(99)00369-5
Google Scholar
[23]
T. R. Bott, Fouling of Heat Exchangers, Elsevier, New York, (1995).
Google Scholar
[24]
D. H. Lister, Corrosion Products in Power Generating Systems, AECL-6877, June (1980).
Google Scholar
[25]
P. J. Whitmore, and A. Meisen, Estimation of Thermo- and Diffusiophoretic Particle Deposition, Can. J. Chem. Eng., vol. 55, 1977, p.279–285.
DOI: 10.1002/cjce.5450550307
Google Scholar