Flow Characteristics of Nanofluids According to Nanoparticles Shape

Article Preview

Abstract:

In this paper, flow characteristics of water-based Al2O3 nanofluids according to nanoparticles shape are experimentally investigated in fully developed laminar flow regime. Al2O3 nanofluids of 0.3 Vol. % with sphere-, rod-, blade-, platelet-and brick-shaped nanoparticles are manufactured by the two-step method. Nanoparticles shape dispersed in base fluid are also checked using TEM image. Zeta potential and sedimentation are measured to examine suspension and dispersion characteristics of Al2O3 nanofluids with nanoparticles of various shapes. Based on the experimental results, it is found that the pressure drop of Al2O3 nanofluids strongly depends on the shape of nanoparticles at the fixed volume fraction of 0.3%. We experimentally show that the pressure drop characteristics of Al2O3 nanofluids can be explained by both the surface area per unit mass and the size of nanoparticles which are related with the shape of nanoparticles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3728-3736

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. A. Eastman, S. U. S. Choi, S. Li, and L. J. Thompson, Enhanced Thermal Conductivity through the Development of Nanofluids, Proc. Symp. Nanophase and Nanocomposite Mater. II, vol. 457, 1997, pp.2-11.

Google Scholar

[2] S. Lee, S. U. S. Choi, and J. A. Eastman, Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles, ASME J. Heat Transfer, vol. 121, 1999, pp.280-289.

DOI: 10.1115/1.2825978

Google Scholar

[3] X. Wang, X. Xu, and S. U. S. Choi, Thermal Conductivity of Nanoparticle-Fluid Mixture, J. Thermophysics and Heat Transfer, vol. 13, 1999, pp.474-480.

DOI: 10.2514/2.6486

Google Scholar

[4] H. Q. Xie, J. C. Wang, T. G. Xi, Y. Liu, F. Ai, and Q. R. Wu, Thermal, Conductivity Enhancement of Suspensions Containing Nanosized Alumina Particles, Journal of Applied Physics, vol. 91, 2002, pp.4568-4572.

DOI: 10.1063/1.1454184

Google Scholar

[5] S. K. Das, N. Putra, P. Thiesen, and W. Roetzel, Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids, ASME J. Heat Transfer, vol. 125, 2003, pp.567-574.

DOI: 10.1115/1.1571080

Google Scholar

[6] H. E. Patel, S. K. Das, T. Sundararajan, A. S. Nair, B. George, and T. Pradeep, Thermal conductivities of naked and monolayer protected metal nanoparticle base nanofluids manifestation of anomalous enhancement and chemical effects, Appl. Phys. Lett., vol. 83, 2003, pp.2931-2933.

DOI: 10.1063/1.1602578

Google Scholar

[7] S. P. Jang, and S. U. S. Choi, Role of Brownian motion in the enhanced thermal conductivity of nanofluids, Appl. Phys. Lett., vol. 84, 2004, pp.4316-4318.

DOI: 10.1063/1.1756684

Google Scholar

[8] D. Wen, and Y. Ding, Experimental investigation into convective heat transfer of nanofluid at the entrance region under laminar flow conditions, Int. J. Heat Mass Transfer, vol. 47, 2004, pp.5181-5188.

DOI: 10.1016/j.ijheatmasstransfer.2004.07.012

Google Scholar

[9] Y. Ding, H. Alias, D. Wen, and R. A. Williams, Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids), Int. J. Heat Mass Transfer, vol. 49, 2006, pp.240-250.

DOI: 10.1016/j.ijheatmasstransfer.2005.07.009

Google Scholar

[10] J. Buongiorno, Convective transport in nanofluids, ASME J. Heat Transfer, vol. 128, 2006, pp.240-250.

DOI: 10.1115/1.2150834

Google Scholar

[11] K. S. Hwang, S. P. Jang, and S. U. S. Choi, Flow and Convective Heat Transfer Characteristics of Water-Based Al2O3 Nanofluids in Fully Developed Laminar Flow Regime, Int. J. Heat Mass Transfer, vol. 52, 2009, pp.193-199.

DOI: 10.1016/j.ijheatmasstransfer.2008.06.032

Google Scholar

[12] Y. He, Y. Jin, H. Chen, Y. Ding, D. Cang, and H. Lu, Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe, Int. J. Heat Mass Transfer, vol. 50, 2007, p.2272–2281.

DOI: 10.1016/j.ijheatmasstransfer.2006.10.024

Google Scholar

[13] S. Z. Heris, M. N. Esfahany, and S. G. Etemad, Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube, Int. J. Heat Fluid Flow, vol. 28, 2007, p.203–210.

DOI: 10.1016/j.ijheatfluidflow.2006.05.001

Google Scholar

[14] B. C. Pak, and Y. I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particle, Experimental Heat Transfer, vol. 11, 1998, pp.151-170.

DOI: 10.1080/08916159808946559

Google Scholar

[15] Y. Xuan, and Q. Li, Investigation on convective heat transfer and flow features of nanofluids, ASME J. Heat Transfer, vol. 125, 2003, pp.151-155.

DOI: 10.1115/1.1532008

Google Scholar

[16] W. Duangthongsuk, and S. Wongwises, Heat transfer enhancement and pressure drop characteristics of TiO2–water nanofluid in a double-tube counter flow heat exchanger, Int. J. Heat Mass Transfer, vol. 52, 2009, p.2059–(2067).

DOI: 10.1016/j.ijheatmasstransfer.2008.10.023

Google Scholar

[17] U. Rea, T. McKrell, L. Hu, and J. Buongiorno, Laminar convective heat transfer and viscous pressure loss of alumina–water and zirconia–water nanofluids, Int. J. Heat Mass Transfer, vol. 52, 2009, p.2042–(2048).

DOI: 10.1016/j.ijheatmasstransfer.2008.10.025

Google Scholar

[18] W. Williams, J. Buongiorno, and L. Hu, Experimental Investigation of Turbulent Convective Heat Transfer and Pressure Loss of Alumina/Water and Zirconia/Water Nanoparticle Colloids (Nanofluids) in Horizontal Tubes, J. Heat Transfer, vol. 130, 2008, p.042412.

DOI: 10.1115/1.2818775

Google Scholar

[19] J. H. Lee, K. S. Hwang, S. P. Jang, B. H. Lee, J. H. Kim, S. U. S. Choi, and C. J. Choi, Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 Nanoparticles, Int. J. Heat Mass Transfer, vol. 51, 2008, pp.2651-2656.

DOI: 10.1016/j.ijheatmasstransfer.2007.10.026

Google Scholar

[20] R. H. Müller, Zetapotential und Partikelladung in der Laborpraxis, 1st Ed., Stuttgart: Wissenschaftliche Verlagsgesellschaft (1996).

Google Scholar

[21] H. J. Kim, S. H. Lee, H. M. Lim, and S. P. Jang Effect of Particle Shape on Thermal Conductivities and Suspension Stabilities of Water-based Al2O3 Nanofluids, unpublished.

Google Scholar

[22] Y. Xuan, and W. Roetzel, Conceptions for Heat Transfer Correlation of Nanofluids, Int. J. Heat Mass Transfer, vol. 43, 2000, p.3701–3707.

DOI: 10.1016/s0017-9310(99)00369-5

Google Scholar

[23] T. R. Bott, Fouling of Heat Exchangers, Elsevier, New York, (1995).

Google Scholar

[24] D. H. Lister, Corrosion Products in Power Generating Systems, AECL-6877, June (1980).

Google Scholar

[25] P. J. Whitmore, and A. Meisen, Estimation of Thermo- and Diffusiophoretic Particle Deposition, Can. J. Chem. Eng., vol. 55, 1977, p.279–285.

DOI: 10.1002/cjce.5450550307

Google Scholar