[1]
M. L. Fisher, K. O. Jornsten, and O. B. G. Madsen, Vehicle Routing with Time Windows: Two Optimization Algorithms, Operations Research, vol. 45, May. 1997, pp.488-492, doi: 10. 1287/opre. 45. 3. 488.
DOI: 10.1287/opre.45.3.488
Google Scholar
[2]
B. Golden, A. Assad, L. Levy, and F. Gheysens, The fleet size and mix vehicle routing problem, Computers & Operations Research, vol. 11, 1984, pp.49-66, doi: 10. 1016/0305-0548(84)90007-8.
DOI: 10.1016/0305-0548(84)90007-8
Google Scholar
[3]
M. Dorigo, L. Gambardella, M. Birattari, A. Martinoli, R. Poli, T. Stützle, X. Li, and P. Tian, An Ant Colony System for the Open Vehicle Routing Problem, Ant Colony Optimization and Swarm Intelligence, vol. 4150, 2006, pp.356-363.
DOI: 10.1007/11839088
Google Scholar
[4]
M. Goetschalckx and C. Jacobs-Blecha, The vehicle routing problem with backhauls, European Journal of Operational Research, vol. 42, September. 1989, pp.39-51, doi: 10. 1016/0377-2217(89)90057-X.
DOI: 10.1016/0377-2217(89)90057-x
Google Scholar
[5]
F. A. Tillman, The Multiple Terminal Delivery Problem with Probabilistic Demands, Transportation Science, vol. 3, August. 1969, pp.192-204, doi: 10. 1287/trsc. 3. 3. 192.
DOI: 10.1287/trsc.3.3.192
Google Scholar
[6]
G. Zӓpfel and M. Bögl, Multi-period vehicle routing and crew scheduling with outsourcing options, International Journal of Production Economics, vol. 113, June. 2008, pp.980-996, doi: 10. 1016/j. ijpe. 2007. 11. 011.
DOI: 10.1016/j.ijpe.2007.11.011
Google Scholar
[7]
W. R. Stewart and B. L. Golden, Stochastic vehicle routing: A comprehensive approach, European Journal of Operational Research, vol. 14, December. 1983, pp.371-385, doi: 10. 1016/0377-2217(83)90237-0.
DOI: 10.1016/0377-2217(83)90237-0
Google Scholar
[8]
D. J. Bertsimas, A vehicle routing problem with stochastic demand, Operational Research, vol. 40, May. 1992, pp.574-585, doi: 10. 1287/opre. 40. 3. 574.
DOI: 10.1287/opre.40.3.574
Google Scholar
[9]
M. Gendreau, G. Laporte, and R. Seguin, An Exact Algorithm for the Vehicle Routing Problem with Stochastic Demands and Customers, Transportation Science, vol. 29, May. 1995, pp.143-155, doi: 10. 1287/trsc. 29. 2. 143.
DOI: 10.1287/trsc.29.2.143
Google Scholar
[10]
M. Gendreau, G. Laporte, and R. Seguin, A Tabu Search Heuristic for the Vehicle Routing Problem with Stochastic Demands and Customers, Operations Research, vol. 44, May. 1996, pp.469-477, doi: 10. 1287/opre. 44. 3. 469.
DOI: 10.1287/opre.44.3.469
Google Scholar
[11]
G. Laporte, M. Gendreau, J. -Y. Potvin, and F. Semet, Classical and modern heuristics for the vehicle routing problem, International Transactions in Operational Research, vol. 7, September. 2000. pp.285-300, doi: 10. 1016/S0969-6016(00)00003-4.
DOI: 10.1111/j.1475-3995.2000.tb00200.x
Google Scholar
[12]
B. E. Gillett and L. R. Miller, A Heuristic Algorithm for the Vehicle-Dispatch Problem, Operations Research, vol. 22, March. 1984, pp.340-349, doi: 10. 1287/opre. 22. 2. 340.
DOI: 10.1287/opre.22.2.340
Google Scholar
[13]
J. Renaud and F. F. Boctor, A sweep-based algorithm for the fleet size and mix vehicle routing problem, European Journal of Operational Research, vol. 140, August. 2002, pp.618-628, doi: 10. 1016/S0377-2217(01)00237-5.
DOI: 10.1016/s0377-2217(01)00237-5
Google Scholar
[14]
G. Clarke and J. W. Wright, Scheduling of Vehicles from a Central Depot to a Number of Delivery Points, Operations Research, vol. 12, July. 1964, pp.568-581, doi: 10. 1287/opre. 12. 4. 568.
DOI: 10.1287/opre.12.4.568
Google Scholar
[15]
M. Gronalt, R. F. Hartl, and M. Reimann, New savings based algorithms for time constrained pickup and delivery of full truckloads, European Journal of Operational Research, vol. 151, December. 2003, pp.520-535.
DOI: 10.1016/s0377-2217(02)00650-1
Google Scholar
[16]
A. A. Juan, J. Faulin, R. Ruiz, B. Barrios, and S. Caballé, The SR-GCWS hybrid algorithm for solving the capacitated vehicle routing problem, Applied Soft Computing, vol. 10, January. 2010, pp.215-224, doi: 10. 1016/j. asoc. 2009. 07. 003.
DOI: 10.1016/j.asoc.2009.07.003
Google Scholar
[17]
E. E. Zachariadis, C. D. Tarantilis, and C. T. Kiranoudis, A Guided Tabu Search for the Vehicle Routing Problem with two-dimensional loading constraints, European Journal of Operational Research, vol. 195, June. 2009, pp.729-743.
DOI: 10.1016/j.ejor.2007.05.058
Google Scholar
[18]
J. Xu and J. P. Kelly, A Network Flow-Based Tabu Search Heuristic for the Vehicle Routing Problem, Transportation Science, vol. 30, November. 1996, pp.379-393, doi: 10. 1287/trsc. 30. 4. 379.
DOI: 10.1287/trsc.30.4.379
Google Scholar
[19]
C.H. Wang and J. -Z. Lu, A hybrid genetic algorithm that optimizes capacitated vehicle routing problems, Expert Systems with Applications, vol. 36, March. 2009, pp.2921-2936, doi: 10. 1016/j. eswa. 2008. 01. 072.
DOI: 10.1016/j.eswa.2008.01.072
Google Scholar
[20]
I. H. Osman, Metastrategy simulated annealing and tabu search algorithms for the vehicle routing problem, Annals of Operations Research, vol. 41, 1993, pp.421-451, doi: 10. 1007/BF02023004.
DOI: 10.1007/bf02023004
Google Scholar
[21]
R. A. Russell, Hybrid Heuristics for the Vehicle Routing Problem with Time Windows, Transportation Science, vol. 29, May. 1995, pp.156-166, doi: 10. 1287/trsc. 29. 2. 156.
DOI: 10.1287/trsc.29.2.156
Google Scholar
[22]
W. Ho, G. T. S. Ho, P. Ji, and H. C. W. Lau, A hybrid genetic algorithm for the multi-depot vehicle routing problem, Engineering Applications of Artificial Intelligence, vol. 21, June. 2008, pp.548-557, doi: 10. 1016/j. engappai. 2007. 06. 001.
DOI: 10.1016/j.engappai.2007.06.001
Google Scholar
[23]
X. Zhang and L. Tang, A new hybrid ant colony optimization algorithm for the vehicle routing problem, Pattern Recognition Letters, vol. 30, July. 2009, pp.848-855, doi: 10. 1016/j. patrec. 2008. 06. 001.
DOI: 10.1016/j.patrec.2008.06.001
Google Scholar
[24]
B.D. Diaz, CVRP Instances, The VRP Web, 2007, http: /neo. lcc. uma. es/radi-aeb/WebVRP.
Google Scholar
[25]
K. Altinkemer and B. Gavish, Parallel savings based heuristics for the delivery problem, Operation Research, vol. 39, May. 1991, pp.456-469, doi: 10. 1287/opre. 39. 3. 456.
DOI: 10.1287/opre.39.3.456
Google Scholar