Output Regulation of the Liu Chaotic System

Article Preview

Abstract:

This paper investigates the problem of regulating the output of the Liu chaotic system (2004). Explicitly, we construct state feedback control laws to regulate the Liu chaotic system so as to track constant reference signals. The control laws are derived using the regulator equations of Byrnes and Isidori (1990), who have solved the output regulation of nonlinear control systems using neutrally stable exosystem dynamics. The simulation results are also discussed in detail.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3982-3989

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B.A. Francis and W.M. Wonham, The internal model principle for linear multivariable regulators, J. Applied Math. Optimization, vol. 2, pp.170-194, (1975).

DOI: 10.1007/bf01447855

Google Scholar

[2] C.I. Byrnes and A. Isidori, Output regulation of nonlinear systems, IEEE Transactions on Automatic Control, vol. 35, pp.131-140, (1990).

DOI: 10.1109/9.45168

Google Scholar

[3] J. Carr, Applications of Centre Manifold Theory, New York: Springer, (1981).

Google Scholar

[4] N.A. Mahmoud and H.K. Khalil, Asymptotic regulation of minimum phase nonlinear systems using output feedback, IEEE Transactions on Automatic Control, vol. 41, pp.1402-1412, (1996).

DOI: 10.1109/9.539423

Google Scholar

[5] E. Fridman, Output regulation of nonlinear control systems with delay, Systems and Control Letters, vol. 50, pp.81-93, (2003).

DOI: 10.1016/s0167-6911(03)00131-2

Google Scholar

[6] Z. Chen and J. Huang, Robust output regulation with nonlinear exosystems, Automatica, vol. 41, pp.1447-1454, (2005).

DOI: 10.1016/j.automatica.2005.03.015

Google Scholar

[7] Z. Chen and J. Huang, Global robust output regulation for output feedback systems, IEEE Transactions on Automatic Control, vol. 50, pp.117-121, (2005).

DOI: 10.1109/tac.2004.841125

Google Scholar

[8] L. Liu and J. Huang, Global robust output regulation of lower triangular systems with unknown control direction, Automatica, vol. 44, pp.1278-1284, (2008).

DOI: 10.1016/j.automatica.2007.09.014

Google Scholar

[9] E. Immonen, Practical output regulation for bounded linear infinite-dimensional state space systems, Automatica, vol. 43, pp.786-794, (2007).

DOI: 10.1016/j.automatica.2006.11.009

Google Scholar

[10] A. Pavlov, N. Van de Wouw and H. Nijmeijer, Global nonlinear output regulation: convergence based controller design, Automatica, vol. 43, pp.456-463, (2007).

DOI: 10.1016/j.automatica.2006.09.007

Google Scholar

[11] Z. Xi and Z. Ding, Global adaptive output regulation of a class of nolinear systems with nonlinear exosystems, Automatica, vol. 43, pp.143-149, (2007).

DOI: 10.1016/j.automatica.2006.08.011

Google Scholar

[12] A. Serrani and A. Isidori, Global robust output regulation for a class of nonlinear systems, Systems and Control Letters, vol. 39, pp.133-139, (2000).

DOI: 10.1016/s0167-6911(99)00099-7

Google Scholar

[13] A. Serrani, A. Isidori and L. Marconi, Semiglobal output regulation for minimum phase systems, International J. Robust and Nonlinear Control, vol. 10, pp.379-396, (2000).

DOI: 10.1002/(sici)1099-1239(20000430)10:5<379::aid-rnc482>3.0.co;2-x

Google Scholar

[14] L. Marconi, A. Isidori and A. Serrani, Non-resonance conditions for uniform observability in the problem of nonlinear output regulation, Systems and Control Letters, vol. 53, pp.281-298, (2004).

DOI: 10.1016/j.sysconle.2004.05.006

Google Scholar

[15] C. Liu, T. Liu, L. Liu and K. Liu, A new chaotic attractor, Chaos, Solitons and Fractals, vol. 22, pp.1031-1088, (2004).

DOI: 10.1016/j.chaos.2004.02.060

Google Scholar

[16] K. Ogata, Modern Control Engineering, 3rd edition, New Jersey: Prentice Hall, (1997).

Google Scholar