p.4057
p.4063
p.4070
p.4076
p.4085
p.4091
p.4096
p.4101
p.4109
A New Fuzzy Approach for Minimizing Conveyer Stoppages in Mixed-Model Assembly Lines
Abstract:
Mixed model production is the practice of assembling different and distinct models in a line without changeovers with responding to sudden demand changes for a variety of models. In this paper, we specify sequence of models to minimize the conveyer stoppages. We assume our lines are fixed and we can not change the balance of the lines. When the condition of lines like setup cost, demand of each models change, it is important to specify the sequence for minimizing the conveyer stoppages without balancing the line again, because the main lines are fixed. We consider three objective functions, simultaneously: minimizing the variation in actual and required production capacity of the line, minimizing the objectives which increase the chance of conveyer stoppage including: a) minimizing the total setup time, b) minimizing the total production variation cost, and minimizing the total utility work cost. We use a new fuzzy programming for this problem; it can present us an estimator for nearness of conveyer stoppages. We study about sub lines and conveyer velocity and its affect on stoppages.
Info:
Periodical:
Pages:
4085-4090
Citation:
Online since:
October 2011
Authors:
Price:
Сopyright:
© 2012 Trans Tech Publications Ltd. All Rights Reserved
Citation:
[1] J. Miltenburg, G. Stenier And S. Yeomans, A dynamic programming algorithm for scheduling mixed model, just in time production system, Mathematics and Computer Modelling, vol. 13, no. 3, 1990, pp.57-66.
[2] S.M.J. Mirzapour Al-e-Hashem, And M.B. Aryanezhad, An efficient method to solve a mixed-model assembly line sequencing problem considering a sub-line, World Applied Sciences Journal, vol. 6, no. 2, 2009, pp.168-181.
[3] Z. Xiaobo, Z. Zhou, And A. Asres, A note on Toyota's goal of sequencing mixed models on an assembly line, Computers & Industrial Engineering, vol. 36, 1999, pp.57-65.
[4] B. Javadi, A. Rahimi-Vahed, M. Rabbani, And M. Dangchi, Solving a multi-objective mixed-model assembly line sequencing problem by a fuzzy goal programming approach, International Journal of Advanced Manufacturing Technology, vol. 39, 2008, pp.975-982.
[5] J. Miltenburg And G. Sinnamon, Scheduling mixed-model multi-level just-in-time production systems, International Journal of Production Research, vol. 27, 1989, pp.487-509.
[6] C.J. Hyun, Y. Kim And Y.K. Kim A genetic algorithm for multiple objective sequencing problems in mixed model assembly lines, Computers & Operations Research, vol. 25, no. 7-8, pp.675-690.
[7] S.A. Mansouri, A multi-objective genetic algorithm for mixed-model sequencing on JIT assembly lines, European Journal of Operational Research, vol. 167, 2005, pp.696-716.
[6] 1.
[6] 75.
[6] 3.
[6] 05.
[5] 61.
[12] 8.
[9] 99.
[10] 4.
[10] 22.
[9] 23 22.
[22] 6.
[20] 2.
[20] 2.
[20] 4.
74.
85.
87.
88.
94 CEAECCAAEBDEECB CBEEECBAAADEECC CAEAEEECBBDAECC EACCBEEABDAEECC CAAEEEECBBDAECC (3, 2, 4, 1, 5) 15 max α 1.
[5] 61.
[5] 41.
[9] 71.
[9] 51.
[16] 6.
[16] 6.
91.
92 EAABBDEECBDAECC EAABDEECBBDAECC (3, 3, 3, 2, 4) 15 max α 1 2.
[5] 9 7.
[5] 9.
[9] 72.
[10] 64.
[8] 92 29.
[25] 8.
[25] 4.
86.
94 DAACBDAEEAAAECC ACAABDDAEEAAECC AAACBDDEEAAAECC (6, 1, 3, 2, 3) 20 max α 1 2.
[8] 62.
[9] 75.
[7] 01.
[18] 55.
[12] 57.
[12] 95.
[18] 4 18.
[16] 2.
47.
53.
8 ADECBDDAABCDBCCDEABE ABDDCBDAAEEECCCBDDAB DAABDEECBBDAECCBDDAC (4, 4, 4, 5, 3) 20 max α 1 2.
[8] 36 7.
[6] 96.
[13] 5.
[12] 97.
[13] 42 20 20.
[18] 8.
75.
76.
78 CAEEEBDABBDEECCDDAAA ABACBDEEEAAAECCBDDDE ABAEECDABBDEECCDDAAE (5, 3, 3, 4, 5) 20 max α 1 2.
[7] 65.
[8] 2.
[7] 09.
[12] 06.
[11] 36.
[10] 38.
[29] 8.
[24] 8.
[31] 8.
88.
89.
93 DDAABEEEDDAACCBDAAEE DAABDAAEEEAAECCBDDDE DAABBDEEEDDDAAAAEECC (6, 2, 2, 5, 5) 30 max α 1 2 3.
[14] 5.
[12] 34.
[11] 62.
[11] 01.
[24] 89.
[29] 88.
[20] 88.
[20] 66.
[21] 19.
[16] 8.
[19] 54.
[19] 4.
66.
55.
79.
8 BAACBEECCEBADDAEABDDDBBDDAECCC AEBDCEAEBBDAECCADBDDACBECDDACB BAECBDAABDDEECCBDAAEEBDACCCBDD BDAABEECCBDDEEAACBDDDABDECCCAB (6, 6, 6, 7, 5) 30 max α 1 2.
[11] 05.
[14] 9.
[9] 57.
[22] 5.
[25] 41.
[20] 6.
[25] 4.
[28] 6.
[26] 2.
34.
61 BBDDBEEABBBEEECCCAAEBDBDDACBDD BDECBBEDDABBDBBDEECDEACAAEDBCB BBABDEECBBDDECCBDAAEECBBDDAEDB (4, 9, 4, 7, 6) Table 2. Effect of Sub-Lines in the Sample Problem size model Z1* Z2* Z3* α Optimal sequence Problem 15 1 2 3 4 5.
[9] 07.
[5] 6.
[6] 67.
[6] 03.
[6] 21.
[12] 8.
[9] 77.
[14] 05.
[9] 99.
[9] 29.
[14] 6 19.
[13] 8.
[25] 8.
[21] 2.
63.
65.
87.
89 AEBEAECCCBEDAEC CDABBEEEEAAECCC EACEEAECCBDAEBC EDACBEEEECCCBAA BAAEEEECCBDAECC (3, 2, 4, 1, 5) 20 1 2 3 4 5.
[8] 3.
[7] 4.
[7] 01.
[7] 4.
[7] 6.
[13] 14.
[13] 46.
[14] 19.
[16] 5.
[13] 55.
[13] 4.
[10] 4.
[13] 4.
[11] 2 14.
59.
68.
67.
47.
67 BDAECDABECCCBABDDDAE CAABBDEEBAAECCCBDDDD ADACBEECBBDAECCBDDDA CDABBEEECCDABABDDADC CDABDDAABEDAECCCBBDE (4, 4, 4, 5, 3) 30 1 2 3 4 5.
[12] 37 11.
[11] 19.
[10] 29.
[9] 79.
[26] 85.
[18] 59.
[24] 28.
[24] 57.
[20] 56.
[21] 6.
[18] 6.
[25] 4.
[19] 8 20.
48.
77.
67.
54.
77 EAACBDBABBEECCEDBECCDDDDCAABDA ABDDEAAEBBDAECCCCDDDAABBBDEECC BBAECDBDAADCCBBCDAAECCBDDDEEAE CBDECCEABBDACDBAEECCBABDDDAADE CBAEECDABBDEECCBDAACCBBDDDADAE (6, 6, 6, 7, 5) Table 3. Effect of Changing Conveyer Velocity in the Sample Problems size Z1* Z2* Z3* α Optimal sequence Problem 15.
[5] 61.
[9] 17.
[18] 2.
92 CAAEEEECBBDAECC (3, 2, 4, 1, 5) 20.
[7] 4.
[12] 56.
[9] 6.
7 CBDEEAABBDDAECCBDDAC (4, 4, 4, 5, 3) 30.
[10] 47.
[20] 65.
[19] 02.
66 CBDECCDAEBDEEAAABBDEABBDDDACCC (6, 6, 6, 7, 5).