Accurate Numerical Prediction of Incompressible Fluid Flow in Lid-Driven Cavities

Article Preview

Abstract:

In this paper, we report an efficient numerical method to predict fluid flow behavior in a square and deep lid-driven cavities. The conventional continuity and momentum equations are transformed into stream-function and vorticity formulation to reduce the number of unknown spatial quantities. Numerical experiments were performed with different values of aspect ratio and Reynolds number to investigate the effect of these dimensionless parameters on the fluid flow behavior in the cavity. In the current study, we found that the dynamics and the structure of primary vortex are significantly affected by the Reynolds number and the aspect ratio of the cavity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

4365-4372

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Santos and M. Costa, Modelling transport phenomena and chemical reactions in auomotive three-way catalytic converters, Chem. Eng. J., vol. 148, 2009, pp.173-183.

DOI: 10.1016/j.cej.2008.11.047

Google Scholar

[2] D. Suresh and S. W. Anthony, Numerical scheme to model condensation and evaporation of aerosols, Atm. Env., vol. 30, 1996, pp.911-928.

Google Scholar

[3] P. G. Darcy, Les Fontaines publiques de la ville de Dijon, Vicro Dalmont. 1856.

Google Scholar

[4] V. Bianco, O. Manca, S. Nardini and M. Roma, Numerical investigation of transient thermal and fluidynamics fields in an executive aircraft cabin, App. Thermal Eng., vol. 29, 2009, 3418-3425.

DOI: 10.1016/j.applthermaleng.2009.05.020

Google Scholar

[5] H. C. Brinkman, A calculation of the viscous force exerted by a flowing fluid in a dense swarm of particles, App. Sci. Res., vol. 1, 1947, pp.27-34.

DOI: 10.1007/bf02120313

Google Scholar

[6] V. Sebastian and W. Thomas, Hydrogen-fueled internal combustion engines, Prog. Energy and Comb. Sci., vol 35, 2009, pp.490-527.

Google Scholar

[7] C. S. Nor Azwadi and T. Tanahashi, Simplified thermal lattice Boltzmann in incomressible limit, Intl. J. Mod. Phys. B, vol. 20, July. 2006, p.2437–2449.

DOI: 10.1142/s0217979206034789

Google Scholar

[8] S. Efisio, C. Xiaoming and V. Sotiris, Modeling wind flow and vehicle induced turbulent in urban streets, Atm. Environ., vol. 42, 2008, pp.4918-4931.

Google Scholar

[9] M. Toumi, M. Bouazara and M. J. Richard, Impac of liquid slosing on the behaviour of vehivles carrying liquid cargo, Eur. J. Mech., vol. 28, 2009, pp.1026-1034.

DOI: 10.1016/j.euromechsol.2009.04.004

Google Scholar

[10] L. F. Richardson, The approximate arithmetical solution by finite difference of physical problems involving differential equations, with an application to the stresses in a Masonry Dam, Phil. Trans. Roy. Soc. Lon., vol. 210, 1910, pp.307-357.

DOI: 10.1098/rsta.1911.0009

Google Scholar

[11] S. Gilbert and F. George, An analysis of the finite element method, Prentice Hall, (1973).

Google Scholar

[12] S. V. Patankar, Numerical heat transfer and fluid flow, Hemisphere, (1980).

Google Scholar

[13] M. A. Abdalla, Analysis of momentum and energy transfer in an lid-driven cavity filled with a porous medium, Intl. J. Heat and Mass Trans., vol. 43, 2000, pp.3513-3527.

DOI: 10.1016/s0017-9310(99)00391-9

Google Scholar

[14] C. S. Nor Azwadi and M. S. Idris, Finite different and lattice Boltzmann modelling for simulation of natural convection in a square cavity, , Intl. J. Mech Mat. Eng., vol. 5, 2010, pp.80-86.

Google Scholar

[15] P. D. Lax and B. Wendroff, Systems of conservation law, Comm. Pure App. Math., vol. 13, 1960, pp.217-237.

DOI: 10.1002/cpa.3160130205

Google Scholar

[16] U. Ghia, K. N. Ghia and C. Y. Shin, High Re solutions for incompresisble flow using the Navier-Stokes equations and a multigrid method, J. Comp. Phys., vol. 48, 1982, pp.387-411.

DOI: 10.1016/0021-9991(82)90058-4

Google Scholar

[17] P. N. Shankar, Moffatt eddies in the cone, J. Fluid. Mech., vol. 539, 2005, pp.113-135.

Google Scholar

[18] S. Hou, Q. Zou, S. Chen and G. Doolen, Simulation of cavity flow by the lattice Boltzmann method, J. Comp. Phys., vol. 118, 1995, pp.329-347.

DOI: 10.1006/jcph.1995.1103

Google Scholar

[19] D. V. Patil, K. N. Lakshmisha, B. Rogg, Lattice Boltzmann simulation of lid-driven flow in deep cavities, Comp. Fluids, vol. 35, 2006, pp.1116-1125.

DOI: 10.1016/j.compfluid.2005.06.006

Google Scholar