[1]
H. Santos and M. Costa, Modelling transport phenomena and chemical reactions in auomotive three-way catalytic converters, Chem. Eng. J., vol. 148, 2009, pp.173-183.
DOI: 10.1016/j.cej.2008.11.047
Google Scholar
[2]
D. Suresh and S. W. Anthony, Numerical scheme to model condensation and evaporation of aerosols, Atm. Env., vol. 30, 1996, pp.911-928.
Google Scholar
[3]
P. G. Darcy, Les Fontaines publiques de la ville de Dijon, Vicro Dalmont. 1856.
Google Scholar
[4]
V. Bianco, O. Manca, S. Nardini and M. Roma, Numerical investigation of transient thermal and fluidynamics fields in an executive aircraft cabin, App. Thermal Eng., vol. 29, 2009, 3418-3425.
DOI: 10.1016/j.applthermaleng.2009.05.020
Google Scholar
[5]
H. C. Brinkman, A calculation of the viscous force exerted by a flowing fluid in a dense swarm of particles, App. Sci. Res., vol. 1, 1947, pp.27-34.
DOI: 10.1007/bf02120313
Google Scholar
[6]
V. Sebastian and W. Thomas, Hydrogen-fueled internal combustion engines, Prog. Energy and Comb. Sci., vol 35, 2009, pp.490-527.
Google Scholar
[7]
C. S. Nor Azwadi and T. Tanahashi, Simplified thermal lattice Boltzmann in incomressible limit, Intl. J. Mod. Phys. B, vol. 20, July. 2006, p.2437–2449.
DOI: 10.1142/s0217979206034789
Google Scholar
[8]
S. Efisio, C. Xiaoming and V. Sotiris, Modeling wind flow and vehicle induced turbulent in urban streets, Atm. Environ., vol. 42, 2008, pp.4918-4931.
Google Scholar
[9]
M. Toumi, M. Bouazara and M. J. Richard, Impac of liquid slosing on the behaviour of vehivles carrying liquid cargo, Eur. J. Mech., vol. 28, 2009, pp.1026-1034.
DOI: 10.1016/j.euromechsol.2009.04.004
Google Scholar
[10]
L. F. Richardson, The approximate arithmetical solution by finite difference of physical problems involving differential equations, with an application to the stresses in a Masonry Dam, Phil. Trans. Roy. Soc. Lon., vol. 210, 1910, pp.307-357.
DOI: 10.1098/rsta.1911.0009
Google Scholar
[11]
S. Gilbert and F. George, An analysis of the finite element method, Prentice Hall, (1973).
Google Scholar
[12]
S. V. Patankar, Numerical heat transfer and fluid flow, Hemisphere, (1980).
Google Scholar
[13]
M. A. Abdalla, Analysis of momentum and energy transfer in an lid-driven cavity filled with a porous medium, Intl. J. Heat and Mass Trans., vol. 43, 2000, pp.3513-3527.
DOI: 10.1016/s0017-9310(99)00391-9
Google Scholar
[14]
C. S. Nor Azwadi and M. S. Idris, Finite different and lattice Boltzmann modelling for simulation of natural convection in a square cavity, , Intl. J. Mech Mat. Eng., vol. 5, 2010, pp.80-86.
Google Scholar
[15]
P. D. Lax and B. Wendroff, Systems of conservation law, Comm. Pure App. Math., vol. 13, 1960, pp.217-237.
DOI: 10.1002/cpa.3160130205
Google Scholar
[16]
U. Ghia, K. N. Ghia and C. Y. Shin, High Re solutions for incompresisble flow using the Navier-Stokes equations and a multigrid method, J. Comp. Phys., vol. 48, 1982, pp.387-411.
DOI: 10.1016/0021-9991(82)90058-4
Google Scholar
[17]
P. N. Shankar, Moffatt eddies in the cone, J. Fluid. Mech., vol. 539, 2005, pp.113-135.
Google Scholar
[18]
S. Hou, Q. Zou, S. Chen and G. Doolen, Simulation of cavity flow by the lattice Boltzmann method, J. Comp. Phys., vol. 118, 1995, pp.329-347.
DOI: 10.1006/jcph.1995.1103
Google Scholar
[19]
D. V. Patil, K. N. Lakshmisha, B. Rogg, Lattice Boltzmann simulation of lid-driven flow in deep cavities, Comp. Fluids, vol. 35, 2006, pp.1116-1125.
DOI: 10.1016/j.compfluid.2005.06.006
Google Scholar