Effect of Acid Treatment on Silica-Titania Aerogel as Oxidative-Acidic Bifunctional Catalyst

Article Preview

Abstract:

Acid treatment using H2SO4, HCl and H3PO4 has been carried out in an attempt to improve catalytic performance of silica-titania aerogel. X-ray diffraction results showed the amorphous structure of the aerogels remained after the acid impregnation and calcinations steps. Hammert analysis revealed these acid modified silica-titania aerogels were superacids with pKa < -14.52. Different Ti species was observed in the samples upon the acid treatment. As compared to silica-titania aerogel, Lewis acidity increased remarkably in HCl treated sample without formation of any Brønsted acid site. Meanwhile, H2SO4 and H3PO4 treated samples possessed both Lewis and Brønsted acid sites. The catalytic performance of these samples was evaluated through a consecutive transformation of 1-octene to 1,2-octanediol through the formation of 1,2-epoxyoctane using aqueous hydrogen peroxide as oxidant.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

457-464

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Prasetyoko, Z. Ramli, S. Endud, H. Nur, TS-1 Loaded with Sulfated Zirconia as Bifunctional Oxidative and Acidic Catalyst for Transformation of 1-Octene to 1, 2-Octanediol, J. Mol. Catal. A: Chem., vol. 241, Nov. 2005, pp.118-125.

DOI: 10.1016/j.molcata.2005.06.070

Google Scholar

[2] M.A. Reicher, E. Ortelli, A. Baiker, Vanadia Grafted on TiO2–SiO2, TiO2 and SiO2 Aerogels: Structural Properties and Catalytic Behaviour in Selective Reduction of NO by NH3, Appl. Catal., B: Environ. Vol. 23, Sept. 1999, pp.187-203.

DOI: 10.1016/s0926-3373(99)00076-4

Google Scholar

[3] C. A. Müller, M. Maciejewski, T. Mallat and A. Baiker, Organically Modified Titania–Silica Aerogels for the Epoxidation of Olefins and Allylic Alcohols, J. Catal., vol. 184, May 1999, p.280–293, doi: 10. 1006/jcat. 1999. 2424.

DOI: 10.1006/jcat.1999.2424

Google Scholar

[4] C.A. Müller, M. Schneider, T. Mallat, A. Baiker, Amine-Modified Titania-Silica Hybrid Gels as Epoxidation Catalysts, Appl. Catal., A: General, vol. 201, July 2000, pp.253-261, doi: 10. 1016/S0926-860X(00)00446-4.

DOI: 10.1016/s0926-860x(00)00446-4

Google Scholar

[5] S. Hu, R.J. Willey, B. Notari, An Investigation on the Catalytic Properties of Titania–Silica Materials, J. Catal., vol. 220, Nov. 2003, pp.240-248, doi: 10. 1016/S0021-9517(03)00294-X.

Google Scholar

[6] N.E. Poh, H. Nur, M.N. Muhid, H. Hamdan, Sulfated AlMCM-41: Mesoporous Solid Bronsted Acid Catalysts for Dibenzoylation of Biphenyl, Catal. Today, vol. 114(2-3), May 2006, pp.257-262, doi: 10. 1016/j. cattod. 2006. 01. 010.

DOI: 10.1016/j.cattod.2006.01.010

Google Scholar

[7] S. Kawi, S.C. Shen, P.L. Chew, Generation of Brønsted Acid Sites on Si-MCM-41 by Grafting of Phosphorus Species, J. Mater. Chem., vol. 12, March 2002, pp.1582-1586, doi: 10. 1039/b107795n.

DOI: 10.1039/b107795n

Google Scholar

[8] L.S. Ling, H. Hamdan, Sulfated Silica-Titania Aerogel as a Bifunctional Oxidative and Acidic Catalyst in the Synthesis of Diols, J. Non-Crystalline Solids, vol. 354, Sept. 2008, pp.3939-3943, doi: 10. 1016/j. jnoncrysol. 2008. 05. 034.

DOI: 10.1016/j.jnoncrysol.2008.05.034

Google Scholar

[9] B.C. Gates, J.R. Katzer, G.C.A. Schuit, G.C.A. 1797. Chemistry of Catalytic Processes. McGraw-Hill, New York, NY.

Google Scholar

[10] H. Nur, D. Prasetyoko, Z. Ramli, S. Endud, Sulfation: A Simple Method to Enhance the Catalytic Activity of TS-1 in Epoxidation of 1-Octene with Aqueous Hydrogen Peroxide, Catal. Commun., vol. 5, Dec. 2004, pp.725-728.

DOI: 10.1016/j.catcom.2004.09.007

Google Scholar