[1]
S. Guo, R. Popovitz-Biro, I. Weissbuch, H. Cohen, G. Hodes and M. Lahav, Synthesis of semiconductor quantum particles in matrices of thin film and crystals of α, ω-alkanedicarboxylate states, Adv. Mater., Vol. 10 (2), 1998, pp.121-125.
DOI: 10.1002/(sici)1521-4095(199801)10:2<121::aid-adma121>3.0.co;2-5
Google Scholar
[2]
P. P. Favero, M. de souza-Parise, J. L. R. fernandez and R. Miotto, Surface properties of CdS nanoparticles, Braz. J. Phys., Vol. 36, no. 3B, 2006, pp.1032-1034.
DOI: 10.1590/s0103-97332006000600062
Google Scholar
[3]
S. K. Haram, B. M. Quinn and A. J. Bard, Electrochemistry of CdS nanoparticles: A correlation between optical and electrochemical band gaps, J. Am. Chem. Soc., Vol. 123, 2001, pp.8860-8861.
DOI: 10.1021/ja0158206
Google Scholar
[4]
L. Spanhel, M. Haase, H. Weller and A. Henglein, Photochemistry of colloidal semiconductors. 20. surface modification and stability of strong luminescing CdS particles, J. Am. Chem. Soc., Vol. 109, (19), 1987, pp.5649-5655.
DOI: 10.1021/ja00253a015
Google Scholar
[5]
B. B. Kale, J. Baeg, S. K. Apte, R. S. Sonawane, S. D. Naik and K. R. Patil, Confinement of nano CdS in designated glass: a novel functionality of quantum dot-glass nanosystems in solar hydrogen production, J. Mater. Chem., Vol. 17, 2007, pp.4297-4303.
DOI: 10.1039/b708269j
Google Scholar
[6]
I. N. Rodriguez, J. A. M. Leyva and J. L. H. H De Cisneros, Use of carbon paste modified electrode for the determination of 2-nitrophenol in a flow system by differential pulse voltammetry, Anal. Chim. Acta, Vol. 344, 1997, pp.167-173.
DOI: 10.1016/s0003-2670(97)00043-3
Google Scholar
[7]
P. Kula, Z. Navratilova, P. Kulova and M. Kotoucek, Sorption and determination of Hg(II) on clay modified carbon paste electrodes, Anal. Chim. Acta, Vol. 385, 1999, pp.91-101.
DOI: 10.1016/s0003-2670(98)00697-7
Google Scholar
[8]
S. Hu, Electrocatalytic reduction of molecular oxygen on a sodium montmorillonite-methyl viologen carbon paste chemical modified electrode, J. Electroanal. Chem., Vol. 463, 1999, pp.253-257.
DOI: 10.1016/s0022-0728(98)00445-8
Google Scholar
[9]
F. J. Anaissi, G. J. -F. Demets, H. E. Toma and A. C. V. Coelho, Modified electrodes based on mixed bentonite vanadium(V)oxide xerogels, J. Electroanal. Chem., Vol. 464, 1999, pp.48-53.
DOI: 10.1016/s0022-0728(98)00465-3
Google Scholar
[10]
P. Falaras, F. Lezou, P. Pomonis and A. Ladavos, Al-pillared acidactivated montmorillonite modified electrodes, J. Electroanal. Chem., Vol. 486, 2000, pp.156-165.
DOI: 10.1016/s0022-0728(00)00133-9
Google Scholar
[11]
V. Ganesan, R. Ramaraj, In situ spectroelectrochemical studies of phenothiazine dyes at clay coated electrodes, J. Electroanal. Chem., Vol. 490, 2000, pp.54-61.
DOI: 10.1016/s0022-0728(00)00223-0
Google Scholar
[12]
C. Mousty, Sensors and biosensors based on clay modified electrodes-new trends, Appl. Clay Sci. Vol. 27, 2004, pp.159-177.
DOI: 10.1016/j.clay.2004.06.005
Google Scholar
[13]
M. Darder, M. Colilla and E. Ruiz-Hitzky, Chitosan-clay nanocomposites: application as electrochemical sensors, Appl. Clay Sci., Vol. 28, 2005, pp.199-208.
DOI: 10.1016/j.clay.2004.02.009
Google Scholar
[14]
B. Rezaei, M. Ghiaci and M. E. Sedaghat, A selective modified bentonite-porphyrin carbon paste electrode for determination of Mn(II) by using anodic stripping voltammetry, Sens. Actuators B Vol. 131, 2008, pp.439-447.
DOI: 10.1016/j.snb.2007.12.017
Google Scholar
[15]
N. Khaorapapong, A. Ontam, S. Youngme and M. Ogawa, Solid state intercalation and in situ formation of cadmium sulfide in the interlayer space of montmorillonite, J. Phys. Chem. Solids, Vol. 69, 2008, pp.1107-1111.
DOI: 10.1016/j.jpcs.2007.10.101
Google Scholar
[16]
N. Khaorapapong, A. Ontam and M. Ogawa, Formation of ZnS and CdS in the interlayer spaces of montmorillonite, Appl. Clay Sci., 2010, in press.
DOI: 10.1016/j.clay.2010.06.013
Google Scholar