[1]
H. B. G. Casimir, On the attraction between two perfectly conducting plates, Proc. K. Ned. Akad. Wet., vol. 51, 1948, pp.793-795.
Google Scholar
[2]
M. Bordag, G. L. Klimchitskaya, U. Mohideen and V. M. Mostepanenko, Advances in the Casimir Effect, Oxford: Clarendon, (2009).
DOI: 10.1093/acprof:oso/9780199238743.001.0001
Google Scholar
[3]
F. Michael Serry, D. Walliser, and J. Maclay, The role of the casimir effect in the static deflection and stiction of membrane strips in microelectromechanical systems (MEMS), J. Appl. Phys., vol. 84, 1998, pp.2501-2506.
DOI: 10.1063/1.368410
Google Scholar
[4]
E. Buks and M. L. Roukes, Stiction, adhesion energy, and the Casimir effect in micromechanical systems, Phys. Rev. B, vol. 63, 2001, 033402.
DOI: 10.1103/physrevb.63.033402
Google Scholar
[5]
H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop and F. Capasso, Quantum mechanical actuation of microelectromechanical systems by the Casimir force, Science, Vol. 291, 2001, p.1941-(1944).
DOI: 10.1126/science.1057984
Google Scholar
[6]
U. Leonhardt and T. G. Philbin, Quantum levitation by left-handed metamaterials, New J. Phys., vol. 9, 2007, 254.
DOI: 10.1088/1367-2630/9/8/254
Google Scholar
[7]
F. Capasso, J. N. Munday, D. Iannuzzi and H. B. Chan, Casimir forces and quantum electrodynamical torques: Physics and nanomechanics, IEEE J. Sel. Top. Quantum Electron., vol 13, 2007, pp.400-414.
DOI: 10.1109/jstqe.2007.893082
Google Scholar
[8]
E. M. Lifshitz, The theory of molecular attractive forces between solids, Zh. Eksp. Teor. Fiz., vol. 29, 1956, pp.94-110.
Google Scholar
[9]
T. H. Boyer, Van der Waals forces and zero-point energy for dielectric and permeable materials, Phys. Rev. A, vol. 9, 1974, p.2078-(2084).
DOI: 10.1103/physreva.9.2078
Google Scholar
[10]
I. Brevik and K. A. Milton, Casimir energies: Temperature dependence, dispersion, and anomalies, Phys. Rev. E, vol. 78, 2008, 011124.
DOI: 10.1103/physreve.78.011124
Google Scholar
[11]
F. Ravndal, Comment on "Casimir energies: Temperature dependence, dispersion, and anomalies", Phys. Rev. E, vol. 79, 2009, 053101.
DOI: 10.1103/physreve.79.053101
Google Scholar
[12]
L. P. Teo, Casimir piston of real materials and its application to multilayer models, Phys. Rev. A, vol. 81, 2010, 032502.
DOI: 10.1103/physreva.81.032502
Google Scholar
[13]
F. Ravndal and L. P. Teo, A dispersive correction to the Casimir force, unpublished.
Google Scholar
[14]
L. P. Teo, Finite temperature Casimir effect in Kaluza-Klein spacetime", Nucl. Phys. B, vol. 819, 2009, p. pp.431-452.
DOI: 10.1016/j.nuclphysb.2009.04.013
Google Scholar
[15]
L.P. Teo, Finite temperature Casimir effect for massive scalar field in spacetime with extra dimensions, JHEP, vol. 0906, 2009, 076.
DOI: 10.1088/1126-6708/2009/06/076
Google Scholar
[16]
F. A. Jenkins and H. E. White, Fundamentals of Optics, 4th ed., McGraw-Hill: Singapore, 1981, pp.474-489.
Google Scholar