Dispersive Correction to Casimir Force at Finite Temperature

Article Preview

Abstract:

We study the dispersive correction to the finite temperature Casimir force acting on a pair of plates immersed in a magnetodielectric medium. We consider the case where both the plates are perfectly conducting and the case where one plate is perfectly conducting and one plate is infinitely permeable. Although the sign and the strength of the Casimir force depend strongly on the properties of the plates, it is found that in the high temperature regime, the Casimir force has a classical limit that does not depend on the properties of the medium separating the plates.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

465-471

Citation:

Online since:

October 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. B. G. Casimir, On the attraction between two perfectly conducting plates, Proc. K. Ned. Akad. Wet., vol. 51, 1948, pp.793-795.

Google Scholar

[2] M. Bordag, G. L. Klimchitskaya, U. Mohideen and V. M. Mostepanenko, Advances in the Casimir Effect, Oxford: Clarendon, (2009).

DOI: 10.1093/acprof:oso/9780199238743.001.0001

Google Scholar

[3] F. Michael Serry, D. Walliser, and J. Maclay, The role of the casimir effect in the static deflection and stiction of membrane strips in microelectromechanical systems (MEMS), J. Appl. Phys., vol. 84, 1998, pp.2501-2506.

DOI: 10.1063/1.368410

Google Scholar

[4] E. Buks and M. L. Roukes, Stiction, adhesion energy, and the Casimir effect in micromechanical systems, Phys. Rev. B, vol. 63, 2001, 033402.

DOI: 10.1103/physrevb.63.033402

Google Scholar

[5] H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop and F. Capasso, Quantum mechanical actuation of microelectromechanical systems by the Casimir force, Science, Vol. 291, 2001, p.1941-(1944).

DOI: 10.1126/science.1057984

Google Scholar

[6] U. Leonhardt and T. G. Philbin, Quantum levitation by left-handed metamaterials, New J. Phys., vol. 9, 2007, 254.

DOI: 10.1088/1367-2630/9/8/254

Google Scholar

[7] F. Capasso, J. N. Munday, D. Iannuzzi and H. B. Chan, Casimir forces and quantum electrodynamical torques: Physics and nanomechanics, IEEE J. Sel. Top. Quantum Electron., vol 13, 2007, pp.400-414.

DOI: 10.1109/jstqe.2007.893082

Google Scholar

[8] E. M. Lifshitz, The theory of molecular attractive forces between solids, Zh. Eksp. Teor. Fiz., vol. 29, 1956, pp.94-110.

Google Scholar

[9] T. H. Boyer, Van der Waals forces and zero-point energy for dielectric and permeable materials, Phys. Rev. A, vol. 9, 1974, p.2078-(2084).

DOI: 10.1103/physreva.9.2078

Google Scholar

[10] I. Brevik and K. A. Milton, Casimir energies: Temperature dependence, dispersion, and anomalies, Phys. Rev. E, vol. 78, 2008, 011124.

DOI: 10.1103/physreve.78.011124

Google Scholar

[11] F. Ravndal, Comment on "Casimir energies: Temperature dependence, dispersion, and anomalies", Phys. Rev. E, vol. 79, 2009, 053101.

DOI: 10.1103/physreve.79.053101

Google Scholar

[12] L. P. Teo, Casimir piston of real materials and its application to multilayer models, Phys. Rev. A, vol. 81, 2010, 032502.

DOI: 10.1103/physreva.81.032502

Google Scholar

[13] F. Ravndal and L. P. Teo, A dispersive correction to the Casimir force, unpublished.

Google Scholar

[14] L. P. Teo, Finite temperature Casimir effect in Kaluza-Klein spacetime", Nucl. Phys. B, vol. 819, 2009, p. pp.431-452.

DOI: 10.1016/j.nuclphysb.2009.04.013

Google Scholar

[15] L.P. Teo, Finite temperature Casimir effect for massive scalar field in spacetime with extra dimensions, JHEP, vol. 0906, 2009, 076.

DOI: 10.1088/1126-6708/2009/06/076

Google Scholar

[16] F. A. Jenkins and H. E. White, Fundamentals of Optics, 4th ed., McGraw-Hill: Singapore, 1981, pp.474-489.

Google Scholar