[1]
M. J. Moore, NOx emission control in gas turbines for combined cycle gas turbine plant, Proc. Inst. Mech. Eng., vol. 211, 1997, pp.43-52.
Google Scholar
[2]
N. Z. Schilling, and D. T. Lee, IGCC-clean power generation alternative for solid fuels, Schenectady: GE Power Systems, (2003).
Google Scholar
[3]
I. Wender, Reactions of synthesis gas, Fuel Processing Technology, vol. 48, 1996, pp.189-207.
Google Scholar
[4]
C. M. Vagelopoulos, and F. N. Egolfopoulos, Laminar flame speeds and extinction strain rates of mixtures of carbon monoxide with hydrogen, methane and air, Proceedings of the Combustion Institute, vol. 25, 1994, pp.1317-1323.
DOI: 10.1016/s0082-0784(06)80773-3
Google Scholar
[5]
H. Sun, S. I. Yang, G. Jomaas, and C. K. Law, High-pressure laminar flame speeds and kinetic modeling of carbon monoxide/hydrogen combustion, Proceedings of the Combustion Institute, vol. 31, 2007, pp.439-446.
DOI: 10.1016/j.proci.2006.07.193
Google Scholar
[6]
E. Monteiro, M. Bellenoue, J. Sotton, N. A. Moreria, and S. Malheiro, Laminar burning velocities and Markstein numbers of syngas-air mixtures, Fuel, vol. 89, 2010, p.1985-(1991).
DOI: 10.1016/j.fuel.2009.11.008
Google Scholar
[7]
F. L. Dryer, and M. Chaos, Ignition of syngas/air and hydrogen/air mixtures at low temperature and high pressure: experimental data interpretation and kinetic modeling implications, Combustion and Flame, vol. 153, 2008, pp.293-299.
DOI: 10.1016/j.combustflame.2007.08.005
Google Scholar
[8]
C. Prathap, A. Ray, and M. R. Ravi, Investigation of nitrogen dilution effects on the laminar burning velocity and flame stability of syngas fuel at atmospheric condition, Combustion and Flame, vol. 135, 2008, pp.145-160.
DOI: 10.1016/j.combustflame.2008.04.005
Google Scholar
[9]
J. Natarajan, T. Lieuwen, and J. Seitzman, Laminar flame speeds of H2/CO mixture: effect of CO2 dilution, preheat temperature and pressure, Combustion and Flame, vol. 151, 2007, pp.104-119.
DOI: 10.1016/j.combustflame.2007.05.003
Google Scholar
[10]
M. C. Drake, and R. J. Blint, Structure of laminar opposed-flow diffusion flames with CO/H2/N2 fuel, Combustion Science and Technology, vol. 61, 1988, pp.187-224.
DOI: 10.1080/00102208808915763
Google Scholar
[11]
D. E. Giles, S. Som, and S. K. Aggarwal, NOx emission characteristics of counterflow syngas diffusion flames with airstream dilution, Fuel, vol. 85, 2006, pp.1729-1742.
DOI: 10.1016/j.fuel.2006.01.027
Google Scholar
[12]
S. Som, A. I. Ramirez, J. Hagerdorn, A. Saveliev, and S. K. Aggarwal, A numerical and experimental study of counterflow syngas flames at different pressures, Fuel, vol. 87, 2008, pp.319-334.
DOI: 10.1016/j.fuel.2007.05.023
Google Scholar
[13]
J. Park, O. B. Kwon, J. H. Yun, S. I. Keel, H. C. Cho, and S. Kim, Preferential diffusion effects on flame characteristics in H2/CO syngas diffusion flames diluted with CO2, International Journal of Hydrogen Energy, vol. 33, 2008, pp.7286-7294.
DOI: 10.1016/j.ijhydene.2008.09.010
Google Scholar
[14]
J. Park, D. H. Lee, S. H. Yoon, T. M. Vu, J. H. Yun, and S. I. Keel, Effects of Lewis number and preferential diffusion on flame characteristics in 80%H2/20%CO syngas counterflow diffusion flames diluted with He and Ar, International Journal of Hydrogen Energy, vol. 34, 2009, pp.1578-1584.
DOI: 10.1016/j.ijhydene.2008.11.087
Google Scholar
[15]
J. Park, D. S. Bae, M. S. Cha, J. H. Yun, S. I. Keel, H. C. Cho, T. K. Kim, and J. S. Ha, Flame characteristics in H2/CO synthetic gas diffusion flames diluted with CO2: effects of radiative heat loss and mixture composition, International Journal of Hydrogen Energy, vol. 33, 2008, pp.7256-7264.
DOI: 10.1016/j.ijhydene.2008.07.063
Google Scholar
[16]
J. Park, J. S. Kim, J. O. Chung, J. H. Yun, and S. I. Keel, Chemical effects of added CO2 on the extinction characteristics of H2/CO/CO2 syngas diffusion flames, International Journal of Hydrogen Energy, vol. 34, 2009, pp.8756-8762.
DOI: 10.1016/j.ijhydene.2009.08.046
Google Scholar
[17]
G. Dixon-Lewis, Structure of laminar flames, Proceedings of the Combustion Institute, vol. 23, 1990, pp.305-324.
Google Scholar
[18]
M. D. Smooke, and V. Giovangigli, Formulation of the premixed and non-premixed test problems, In: Lecture Notes in Physics, Ser. 384, Springer-Verlag, Chap. 1, (1991).
Google Scholar
[19]
J. S. T'ien, Diffusion flame extinction at small stretch rates: the mechanism of radiative loss, Combustion and Flame, vol. 65, 1986, pp.31-34.
DOI: 10.1016/0010-2180(86)90069-6
Google Scholar
[20]
K. Maruta, M. Yoshida, H. Guo, Y. Ju, and T. Niioka, Extinction of low-stretched diffusion flame in microgravity, Combustion and Flame, vol. 112, 1998, pp.181-187.
DOI: 10.1016/s0010-2180(97)81766-x
Google Scholar
[21]
H. Bedir, J. S. T'ien, and H. S. Lee, Comparison of different radiation treatments for a one-Dimensional diffusion flame, Combustion Theory and Modeling, vol. 1, 1997, pp.395-404.
DOI: 10.1080/713665340
Google Scholar
[22]
T. Daguse, J. C. Croonenbroek, J. C. Rolon, N. Darabina, and A. Soufiani, Study of radiative effects on laminar counterflow H2/O2/N2 diffusion flame, Combustion and Flame, vol. 106, 1996, pp.271-287.
DOI: 10.1016/0010-2180(95)00251-0
Google Scholar
[23]
H. Y. Shih, H. Bedir, J. S. T'ien, and C. J. Sung, Computed flammability limits of opposed-jet H2/O2/CO2 diffusion flames at low pressure, Journal of Propulsion and Power, vol. 15, 1999, pp.903-908.
DOI: 10.2514/2.5514
Google Scholar
[24]
H. Y. Shih, Computed extinction limits and flame structures of H2/O2 counterflow diffusion flames with CO2 dilution, International Journal of Hydrogen Energy, vol. 34, 2009, pp.4005-4013.
DOI: 10.1016/j.ijhydene.2009.03.013
Google Scholar
[25]
T. K. Kim, J. A. Menart, and H. S. Lee, Nongray radiative gas analyses using SN discrete ordinates method, Journal of Heat Transfer, vol. 113, 1991, pp.946-952.
DOI: 10.1115/1.2911226
Google Scholar
[26]
C. B. Ludwig, M. Malkmus, J. E. Reardon, and J. A. L. Thomson, Handbook of infrared radiation by combustion gases, edited by R. Goulard, and J. A. L. Thomson, NASA SP3080, (1973).
Google Scholar
[27]
W. L. Godson, The evaluation of infrared radiative fluxes due to atmospheric water vapor, Quarterly Journal of the Royal Meteorological Society, vol. 79, 1953, pp.367-379.
DOI: 10.1002/qj.49707934104
Google Scholar
[28]
A. Soufiani, and J. Taine, High temperature gas radiative property parameters of statistical narrowband model for H2O, CO2, and CO and correlated k model for H2O and CO2, Int J Heat Mass Transfer, vol. 40, 1997, pp.987-991.
DOI: 10.1016/0017-9310(96)00129-9
Google Scholar
[29]
A. E. Lutz, R. J. Kee, J. F. Grcar, and F. M. Rupley, OPPDIF: A FORTRAN program for computing opposed-flow diffusion flames. Sandia Labs. TR SAND96-8243, (1996).
DOI: 10.2172/568983
Google Scholar
[30]
R. J. Kee, F. M. Rupley, and J. A. Miller, Chemkin II: A FORTRAN chemical kinetics package for the analysis of gas-phase chemical kinetics. Sandia Labs., TR SAND89-8009, (1989).
DOI: 10.2172/5681118
Google Scholar
[31]
R. J. Kee, G. Dixon-Lewis, J. Warnatz, M. E. Coltrin, and J. A. Miller, FORTRAN computer code package for the evaluation of gas-phase multi-component transport properties. Sandia Labs., TR SAND86-8246, (1986).
Google Scholar
[32]
G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. H. Song, W. C. Gardiner, Jr. Lissianski, V. V, and Z. W. Qin, http: /www. me. berkeley. edu/gri_mech.
Google Scholar
[33]
C. K. Westbrook, and F. L. Dryer, Chemical kinetic modeling of hydrocarbon combustion, Progress in Energy and Combustion Sciense, vol. 10, 1984, pp.1-57.
DOI: 10.1016/0360-1285(84)90118-7
Google Scholar