Computed Extinction Limits and Flame Structures of Opposed-Jet Syngas Diffusion Flames

Article Preview

Abstract:

This paper reports a numerical study on the extinction limits and flame structures of opposed-jet syngas diffusion flames. A narrowband radiation model is coupled to the OPPDIF program, which uses detailed chemical kinetics and thermal and transport properties to enable the study of 1-D counterflow syngas diffusion flames over the entire range of flammable strain rates with flame radiation. The effects of syngas composition, strain rate, ambient pressure, and dilution gases on the flame structures and extinction limits of H2/CO synthetic mixture flames were examined. Results indicate the flame structures and flame extinction are impacted by the composition of syngas mixture significantly. From hydrogen-lean syngas to hydrogen-rich syngas fuels, flame temperature increases with increasing hydrogen content and ambient pressure, but the flame thickness is decreased with ambient pressure and strain rates. Besides, the dilution effects from CO2, N2, and H2O, which may be present in the syngas mixtures, were studied. The flame is thinner and flame temperature is lower when CO2 is the diluents instead of N2. The combustible range of strain rates is extended with increasing hydrogen percentage and ambient pressure, but it is decreased the most with CO2 as the dilution gas due to the dilution effects. Complete flammability limits using strain rates, maximum flame temperature as coordinates can provide a fundamental understanding of syngas combustion and applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

4899-4906

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. J. Moore, NOx emission control in gas turbines for combined cycle gas turbine plant, Proc. Inst. Mech. Eng., vol. 211, 1997, pp.43-52.

Google Scholar

[2] N. Z. Schilling, and D. T. Lee, IGCC-clean power generation alternative for solid fuels, Schenectady: GE Power Systems, (2003).

Google Scholar

[3] I. Wender, Reactions of synthesis gas, Fuel Processing Technology, vol. 48, 1996, pp.189-207.

Google Scholar

[4] C. M. Vagelopoulos, and F. N. Egolfopoulos, Laminar flame speeds and extinction strain rates of mixtures of carbon monoxide with hydrogen, methane and air, Proceedings of the Combustion Institute, vol. 25, 1994, pp.1317-1323.

DOI: 10.1016/s0082-0784(06)80773-3

Google Scholar

[5] H. Sun, S. I. Yang, G. Jomaas, and C. K. Law, High-pressure laminar flame speeds and kinetic modeling of carbon monoxide/hydrogen combustion, Proceedings of the Combustion Institute, vol. 31, 2007, pp.439-446.

DOI: 10.1016/j.proci.2006.07.193

Google Scholar

[6] E. Monteiro, M. Bellenoue, J. Sotton, N. A. Moreria, and S. Malheiro, Laminar burning velocities and Markstein numbers of syngas-air mixtures, Fuel, vol. 89, 2010, p.1985-(1991).

DOI: 10.1016/j.fuel.2009.11.008

Google Scholar

[7] F. L. Dryer, and M. Chaos, Ignition of syngas/air and hydrogen/air mixtures at low temperature and high pressure: experimental data interpretation and kinetic modeling implications, Combustion and Flame, vol. 153, 2008, pp.293-299.

DOI: 10.1016/j.combustflame.2007.08.005

Google Scholar

[8] C. Prathap, A. Ray, and M. R. Ravi, Investigation of nitrogen dilution effects on the laminar burning velocity and flame stability of syngas fuel at atmospheric condition, Combustion and Flame, vol. 135, 2008, pp.145-160.

DOI: 10.1016/j.combustflame.2008.04.005

Google Scholar

[9] J. Natarajan, T. Lieuwen, and J. Seitzman, Laminar flame speeds of H2/CO mixture: effect of CO2 dilution, preheat temperature and pressure, Combustion and Flame, vol. 151, 2007, pp.104-119.

DOI: 10.1016/j.combustflame.2007.05.003

Google Scholar

[10] M. C. Drake, and R. J. Blint, Structure of laminar opposed-flow diffusion flames with CO/H2/N2 fuel, Combustion Science and Technology, vol. 61, 1988, pp.187-224.

DOI: 10.1080/00102208808915763

Google Scholar

[11] D. E. Giles, S. Som, and S. K. Aggarwal, NOx emission characteristics of counterflow syngas diffusion flames with airstream dilution, Fuel, vol. 85, 2006, pp.1729-1742.

DOI: 10.1016/j.fuel.2006.01.027

Google Scholar

[12] S. Som, A. I. Ramirez, J. Hagerdorn, A. Saveliev, and S. K. Aggarwal, A numerical and experimental study of counterflow syngas flames at different pressures, Fuel, vol. 87, 2008, pp.319-334.

DOI: 10.1016/j.fuel.2007.05.023

Google Scholar

[13] J. Park, O. B. Kwon, J. H. Yun, S. I. Keel, H. C. Cho, and S. Kim, Preferential diffusion effects on flame characteristics in H2/CO syngas diffusion flames diluted with CO2, International Journal of Hydrogen Energy, vol. 33, 2008, pp.7286-7294.

DOI: 10.1016/j.ijhydene.2008.09.010

Google Scholar

[14] J. Park, D. H. Lee, S. H. Yoon, T. M. Vu, J. H. Yun, and S. I. Keel, Effects of Lewis number and preferential diffusion on flame characteristics in 80%H2/20%CO syngas counterflow diffusion flames diluted with He and Ar, International Journal of Hydrogen Energy, vol. 34, 2009, pp.1578-1584.

DOI: 10.1016/j.ijhydene.2008.11.087

Google Scholar

[15] J. Park, D. S. Bae, M. S. Cha, J. H. Yun, S. I. Keel, H. C. Cho, T. K. Kim, and J. S. Ha, Flame characteristics in H2/CO synthetic gas diffusion flames diluted with CO2: effects of radiative heat loss and mixture composition, International Journal of Hydrogen Energy, vol. 33, 2008, pp.7256-7264.

DOI: 10.1016/j.ijhydene.2008.07.063

Google Scholar

[16] J. Park, J. S. Kim, J. O. Chung, J. H. Yun, and S. I. Keel, Chemical effects of added CO2 on the extinction characteristics of H2/CO/CO2 syngas diffusion flames, International Journal of Hydrogen Energy, vol. 34, 2009, pp.8756-8762.

DOI: 10.1016/j.ijhydene.2009.08.046

Google Scholar

[17] G. Dixon-Lewis, Structure of laminar flames, Proceedings of the Combustion Institute, vol. 23, 1990, pp.305-324.

Google Scholar

[18] M. D. Smooke, and V. Giovangigli, Formulation of the premixed and non-premixed test problems, In: Lecture Notes in Physics, Ser. 384, Springer-Verlag, Chap. 1, (1991).

Google Scholar

[19] J. S. T'ien, Diffusion flame extinction at small stretch rates: the mechanism of radiative loss, Combustion and Flame, vol. 65, 1986, pp.31-34.

DOI: 10.1016/0010-2180(86)90069-6

Google Scholar

[20] K. Maruta, M. Yoshida, H. Guo, Y. Ju, and T. Niioka, Extinction of low-stretched diffusion flame in microgravity, Combustion and Flame, vol. 112, 1998, pp.181-187.

DOI: 10.1016/s0010-2180(97)81766-x

Google Scholar

[21] H. Bedir, J. S. T'ien, and H. S. Lee, Comparison of different radiation treatments for a one-Dimensional diffusion flame, Combustion Theory and Modeling, vol. 1, 1997, pp.395-404.

DOI: 10.1080/713665340

Google Scholar

[22] T. Daguse, J. C. Croonenbroek, J. C. Rolon, N. Darabina, and A. Soufiani, Study of radiative effects on laminar counterflow H2/O2/N2 diffusion flame, Combustion and Flame, vol. 106, 1996, pp.271-287.

DOI: 10.1016/0010-2180(95)00251-0

Google Scholar

[23] H. Y. Shih, H. Bedir, J. S. T'ien, and C. J. Sung, Computed flammability limits of opposed-jet H2/O2/CO2 diffusion flames at low pressure, Journal of Propulsion and Power, vol. 15, 1999, pp.903-908.

DOI: 10.2514/2.5514

Google Scholar

[24] H. Y. Shih, Computed extinction limits and flame structures of H2/O2 counterflow diffusion flames with CO2 dilution, International Journal of Hydrogen Energy, vol. 34, 2009, pp.4005-4013.

DOI: 10.1016/j.ijhydene.2009.03.013

Google Scholar

[25] T. K. Kim, J. A. Menart, and H. S. Lee, Nongray radiative gas analyses using SN discrete ordinates method, Journal of Heat Transfer, vol. 113, 1991, pp.946-952.

DOI: 10.1115/1.2911226

Google Scholar

[26] C. B. Ludwig, M. Malkmus, J. E. Reardon, and J. A. L. Thomson, Handbook of infrared radiation by combustion gases, edited by R. Goulard, and J. A. L. Thomson, NASA SP3080, (1973).

Google Scholar

[27] W. L. Godson, The evaluation of infrared radiative fluxes due to atmospheric water vapor, Quarterly Journal of the Royal Meteorological Society, vol. 79, 1953, pp.367-379.

DOI: 10.1002/qj.49707934104

Google Scholar

[28] A. Soufiani, and J. Taine, High temperature gas radiative property parameters of statistical narrowband model for H2O, CO2, and CO and correlated k model for H2O and CO2, Int J Heat Mass Transfer, vol. 40, 1997, pp.987-991.

DOI: 10.1016/0017-9310(96)00129-9

Google Scholar

[29] A. E. Lutz, R. J. Kee, J. F. Grcar, and F. M. Rupley, OPPDIF: A FORTRAN program for computing opposed-flow diffusion flames. Sandia Labs. TR SAND96-8243, (1996).

DOI: 10.2172/568983

Google Scholar

[30] R. J. Kee, F. M. Rupley, and J. A. Miller, Chemkin II: A FORTRAN chemical kinetics package for the analysis of gas-phase chemical kinetics. Sandia Labs., TR SAND89-8009, (1989).

DOI: 10.2172/5681118

Google Scholar

[31] R. J. Kee, G. Dixon-Lewis, J. Warnatz, M. E. Coltrin, and J. A. Miller, FORTRAN computer code package for the evaluation of gas-phase multi-component transport properties. Sandia Labs., TR SAND86-8246, (1986).

Google Scholar

[32] G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. H. Song, W. C. Gardiner, Jr. Lissianski, V. V, and Z. W. Qin, http: /www. me. berkeley. edu/gri_mech.

Google Scholar

[33] C. K. Westbrook, and F. L. Dryer, Chemical kinetic modeling of hydrocarbon combustion, Progress in Energy and Combustion Sciense, vol. 10, 1984, pp.1-57.

DOI: 10.1016/0360-1285(84)90118-7

Google Scholar