Automatic Global Registration of 3D Point Clouds for Reverse Engineering and Inspection Processes

Article Preview

Abstract:

Registration of 3D point clouds is one of the most fundamental phases during the process of reverse engineering and most challenging at the same time. This phase consists on matching two or more different point clouds into one data set in order to have them share the same global coordinate system. In this paper we present a new approach for automatic registration of 3D point clouds that uses the genetic algorithm (GA) as a global optimization method. We introduce a trips extraction technique for rough registration, which extracts important geometric information from a point cloud. Another contribution in this paper is the introduction of the Interpenetration Fraction Measure (IFM), which maximizes the number of points that overlap two different point clouds. The algorithm we present also takes advantage of the parallel computing power of today’s multi-core processors, and other techniques for further efficiency. Finally, we present some experimental data with comparisons for analysis and further discussion about the algorithm’s performance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

4907-4913

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. J. Besl and N. D. McKay, A method for registration of 3-D shapes, IEEE Transactions on Pattern Analysis and Machine Intelligence vol. 14, pp.239-256, (1992).

DOI: 10.1109/34.121791

Google Scholar

[2] K. -H. Bae and D. D. Lichti, A method for automated registration of unorganised point clouds , ISPRS Journal of Photogrammetry and Remote Sensing, vol. 63, pp.36-54, 25 July 2007 (2007).

DOI: 10.1016/j.isprsjprs.2007.05.012

Google Scholar

[3] Y. Chen and G. Medioni, Object modelling by registration of multiple range images, Image Vision Comput., vol. 10, pp.145-155, (1992).

DOI: 10.1016/0262-8856(92)90066-c

Google Scholar

[4] J. Feldmar and N. Ayache, Rigid, affine and locally affine registration of free-form surfaces, International Journal of Computer Vision, vol. 18, pp.99-119, (1996).

DOI: 10.1007/bf00054998

Google Scholar

[5] E. Trucco, et al., Robust motion and correspondence of noisy 3-D point sets with missing data, Pattern Recognition Letters, vol. 20, pp.889-898, (1999).

DOI: 10.1016/s0167-8655(99)00055-0

Google Scholar

[6] S. Rusinkiewicz and M. Levoy, Efficient variants of the ICP algorithm, in Third International Conference on 3-D Digital Imaging and Modeling, 2001. Proceedings. , Quebec City, Que., Canada, 2001, pp.145-152.

DOI: 10.1109/im.2001.924423

Google Scholar

[7] M. A. Rodrigues and Y. Liu, On the representation of rigid body transformations for accurate registration of free-form shapes , Robotics and Autonomous Systems, vol. 39, pp.37-52, (2001).

DOI: 10.1016/s0921-8890(02)00173-2

Google Scholar

[8] L. Zhu, et al., Efficient registration for precision inspection of free-form surfaces, International journal of advanced manufacturing technology, vol. 32, pp.505-515, (2007).

DOI: 10.1007/s00170-005-0370-9

Google Scholar

[9] T. Zinsser, et al., A refined ICP algorithm for robust 3-D correspondence estimation, in International Conference on Image Processing, 2003. ICIP 2003. Proceedings. 2003, 2003, pp.695-698.

DOI: 10.1109/icip.2003.1246775

Google Scholar

[10] Y. Liu, et al., 3D shape matching using collinearity constraint, " in IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA , 04. 2004, 2004, pp.2285-2290.

DOI: 10.1109/robot.2004.1307402

Google Scholar

[11] T. Jost and H. Hugli, A multi-resolution ICP with heuristic closest point search for fast and robust 3D registration of range images, in International Conference on 3D Digital Imaging and Modeling, 2003, pp.427-433.

DOI: 10.1109/im.2003.1240278

Google Scholar

[12] D. Chetverikov, et al., Robust Euclidean alignment of 3D point sets: the trimmed iterative closest point algorithm , Image and Vision Computing, vol. 23, pp.299-309, 1 March 2005 (2005).

DOI: 10.1016/j.imavis.2004.05.007

Google Scholar

[13] D. Chetverikov, et al., The trimmed iterative closest point algorithm, " in Proceedings of the 16 th International Conference on Pattern Recognition (ICPR, 02), 2002, pp.545-548.

Google Scholar

[14] C. A. Kapoutsis, et al., Morphological iterative closest point algorithm, Image Processing, IEEE Transactions on, vol. 8, pp.1644-1646, (1999).

DOI: 10.1109/83.799892

Google Scholar

[15] A. Makadia, et al., Fully automatic registration of 3D point clouds, presented at the Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Volume 1, (2006).

DOI: 10.1109/cvpr.2006.122

Google Scholar

[16] L. Velho, et al., Mathematical Optimization in Computer Graphics and Vision: Morgan Kaufmann, (2008).

Google Scholar

[17] P. Venkataraman, Applied Optimization with MATLAB Programming, 1st ed.: Wiley Interscience, (2002).

Google Scholar

[18] E. K. P. Chong and S. H. Zak, An Introduction to Optimization, 3th ed.: Wiley-Interscience, (2008).

Google Scholar

[19] L. Silva, et al., Robust Range Image Registration Using Genetic Algorithms And The Surface Interpenetration Measure vol. 60: World Scientific Publishing Company, (2005).

Google Scholar

[20] L. Silva, et al., Precision range image registration using a robust surface interpenetration measure and enhanced genetic algorithms, IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, pp.762-776, (2005).

DOI: 10.1109/tpami.2005.108

Google Scholar

[21] K. Brunnstrom and A. J. Stoddartt, Genetic algorithms for free-form surface matching, " presented at the Proceedings of the International Conference on Pattern Recognition (ICPR , 96) Volume IV-Volume 7472 - Volume 7472, (1996).

DOI: 10.1109/icpr.1996.547653

Google Scholar

[22] S. M. Yamany, et al., A new genetic-based technique for matching 3-D curves and surfaces, Pattern recognition, vol. 32, pp.1871-1820, (1999).

DOI: 10.1016/s0031-3203(99)00060-6

Google Scholar

[23] J. M. Rouet, et al., Genetic algorithms for a robust 3-D MR-CT registration, IEEE Transactions on Information Technology in Biomedicine, vol. 4, pp.126-136, June 2000 (2000).

DOI: 10.1109/4233.845205

Google Scholar

[24] G. Percoco and L. M. Galantucci, Genetic Point Cloud Alignment for Computer Aided Inspection and Reverse Engineering, (2002).

Google Scholar

[25] L. M. Galantuccia, et al., An artificial intelligence approach to registration of free-form shapes , CIRP Annals - Manufacturing Technology, vol. 53, pp.139-142 (2004).

DOI: 10.1016/s0007-8506(07)60663-5

Google Scholar

[26] C. K. Chow, et al., Surface registration using a dynamic genetic algorithm , Pattern Recognition, vol. 37, pp.105-117, (2003).

Google Scholar

[27] E. Lomonosov, et al., Fully automatic, robust and precise alignment of measured 3D surfaces for arbitrary orientations, in 28th Workshop of the Austrian Association for Pattern Recognition, 2004, pp.39-46.

Google Scholar

[28] F. L. Seixas, et al., Image registration using genetic algorithms, presented at the Proceedings of the 10th annual conference on Genetic and evolutionary computation, Atlanta, GA, USA, (2008).

DOI: 10.1145/1389095.1389320

Google Scholar

[29] C. Robertson and R. B. Fisher, Parallel evolutionary registration of range data, Comput. Vis. Image Underst., vol. 87, pp.39-50, (2002).

Google Scholar

[30] B. Cyganek and J. P. Siebert, An Introduction to 3D Computer Vision Techniques and Algorithms: Wiley, (2009).

Google Scholar

[31] N. Nikolaidis and I. Pitas, 3-D Image Processing Algorithms: Wiley-Interscience, (2001).

Google Scholar

[32] S. Molkenstruck and S. Winkelbach. (2007, David Laserscanner. Available: http: /www. david-laserscanner. com.

Google Scholar

[33] P. H. S. Torr and A. Zisserman, MLESAC: a new robust estimator with application to estimating image geometry, Comput. Vis. Image Underst., vol. 78, pp.138-156, (2000).

DOI: 10.1006/cviu.1999.0832

Google Scholar