[1]
P. J. Besl and N. D. McKay, A method for registration of 3-D shapes, IEEE Transactions on Pattern Analysis and Machine Intelligence vol. 14, pp.239-256, (1992).
DOI: 10.1109/34.121791
Google Scholar
[2]
K. -H. Bae and D. D. Lichti, A method for automated registration of unorganised point clouds , ISPRS Journal of Photogrammetry and Remote Sensing, vol. 63, pp.36-54, 25 July 2007 (2007).
DOI: 10.1016/j.isprsjprs.2007.05.012
Google Scholar
[3]
Y. Chen and G. Medioni, Object modelling by registration of multiple range images, Image Vision Comput., vol. 10, pp.145-155, (1992).
DOI: 10.1016/0262-8856(92)90066-c
Google Scholar
[4]
J. Feldmar and N. Ayache, Rigid, affine and locally affine registration of free-form surfaces, International Journal of Computer Vision, vol. 18, pp.99-119, (1996).
DOI: 10.1007/bf00054998
Google Scholar
[5]
E. Trucco, et al., Robust motion and correspondence of noisy 3-D point sets with missing data, Pattern Recognition Letters, vol. 20, pp.889-898, (1999).
DOI: 10.1016/s0167-8655(99)00055-0
Google Scholar
[6]
S. Rusinkiewicz and M. Levoy, Efficient variants of the ICP algorithm, in Third International Conference on 3-D Digital Imaging and Modeling, 2001. Proceedings. , Quebec City, Que., Canada, 2001, pp.145-152.
DOI: 10.1109/im.2001.924423
Google Scholar
[7]
M. A. Rodrigues and Y. Liu, On the representation of rigid body transformations for accurate registration of free-form shapes , Robotics and Autonomous Systems, vol. 39, pp.37-52, (2001).
DOI: 10.1016/s0921-8890(02)00173-2
Google Scholar
[8]
L. Zhu, et al., Efficient registration for precision inspection of free-form surfaces, International journal of advanced manufacturing technology, vol. 32, pp.505-515, (2007).
DOI: 10.1007/s00170-005-0370-9
Google Scholar
[9]
T. Zinsser, et al., A refined ICP algorithm for robust 3-D correspondence estimation, in International Conference on Image Processing, 2003. ICIP 2003. Proceedings. 2003, 2003, pp.695-698.
DOI: 10.1109/icip.2003.1246775
Google Scholar
[10]
Y. Liu, et al., 3D shape matching using collinearity constraint, " in IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA , 04. 2004, 2004, pp.2285-2290.
DOI: 10.1109/robot.2004.1307402
Google Scholar
[11]
T. Jost and H. Hugli, A multi-resolution ICP with heuristic closest point search for fast and robust 3D registration of range images, in International Conference on 3D Digital Imaging and Modeling, 2003, pp.427-433.
DOI: 10.1109/im.2003.1240278
Google Scholar
[12]
D. Chetverikov, et al., Robust Euclidean alignment of 3D point sets: the trimmed iterative closest point algorithm , Image and Vision Computing, vol. 23, pp.299-309, 1 March 2005 (2005).
DOI: 10.1016/j.imavis.2004.05.007
Google Scholar
[13]
D. Chetverikov, et al., The trimmed iterative closest point algorithm, " in Proceedings of the 16 th International Conference on Pattern Recognition (ICPR, 02), 2002, pp.545-548.
Google Scholar
[14]
C. A. Kapoutsis, et al., Morphological iterative closest point algorithm, Image Processing, IEEE Transactions on, vol. 8, pp.1644-1646, (1999).
DOI: 10.1109/83.799892
Google Scholar
[15]
A. Makadia, et al., Fully automatic registration of 3D point clouds, presented at the Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Volume 1, (2006).
DOI: 10.1109/cvpr.2006.122
Google Scholar
[16]
L. Velho, et al., Mathematical Optimization in Computer Graphics and Vision: Morgan Kaufmann, (2008).
Google Scholar
[17]
P. Venkataraman, Applied Optimization with MATLAB Programming, 1st ed.: Wiley Interscience, (2002).
Google Scholar
[18]
E. K. P. Chong and S. H. Zak, An Introduction to Optimization, 3th ed.: Wiley-Interscience, (2008).
Google Scholar
[19]
L. Silva, et al., Robust Range Image Registration Using Genetic Algorithms And The Surface Interpenetration Measure vol. 60: World Scientific Publishing Company, (2005).
Google Scholar
[20]
L. Silva, et al., Precision range image registration using a robust surface interpenetration measure and enhanced genetic algorithms, IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, pp.762-776, (2005).
DOI: 10.1109/tpami.2005.108
Google Scholar
[21]
K. Brunnstrom and A. J. Stoddartt, Genetic algorithms for free-form surface matching, " presented at the Proceedings of the International Conference on Pattern Recognition (ICPR , 96) Volume IV-Volume 7472 - Volume 7472, (1996).
DOI: 10.1109/icpr.1996.547653
Google Scholar
[22]
S. M. Yamany, et al., A new genetic-based technique for matching 3-D curves and surfaces, Pattern recognition, vol. 32, pp.1871-1820, (1999).
DOI: 10.1016/s0031-3203(99)00060-6
Google Scholar
[23]
J. M. Rouet, et al., Genetic algorithms for a robust 3-D MR-CT registration, IEEE Transactions on Information Technology in Biomedicine, vol. 4, pp.126-136, June 2000 (2000).
DOI: 10.1109/4233.845205
Google Scholar
[24]
G. Percoco and L. M. Galantucci, Genetic Point Cloud Alignment for Computer Aided Inspection and Reverse Engineering, (2002).
Google Scholar
[25]
L. M. Galantuccia, et al., An artificial intelligence approach to registration of free-form shapes , CIRP Annals - Manufacturing Technology, vol. 53, pp.139-142 (2004).
DOI: 10.1016/s0007-8506(07)60663-5
Google Scholar
[26]
C. K. Chow, et al., Surface registration using a dynamic genetic algorithm , Pattern Recognition, vol. 37, pp.105-117, (2003).
Google Scholar
[27]
E. Lomonosov, et al., Fully automatic, robust and precise alignment of measured 3D surfaces for arbitrary orientations, in 28th Workshop of the Austrian Association for Pattern Recognition, 2004, pp.39-46.
Google Scholar
[28]
F. L. Seixas, et al., Image registration using genetic algorithms, presented at the Proceedings of the 10th annual conference on Genetic and evolutionary computation, Atlanta, GA, USA, (2008).
DOI: 10.1145/1389095.1389320
Google Scholar
[29]
C. Robertson and R. B. Fisher, Parallel evolutionary registration of range data, Comput. Vis. Image Underst., vol. 87, pp.39-50, (2002).
Google Scholar
[30]
B. Cyganek and J. P. Siebert, An Introduction to 3D Computer Vision Techniques and Algorithms: Wiley, (2009).
Google Scholar
[31]
N. Nikolaidis and I. Pitas, 3-D Image Processing Algorithms: Wiley-Interscience, (2001).
Google Scholar
[32]
S. Molkenstruck and S. Winkelbach. (2007, David Laserscanner. Available: http: /www. david-laserscanner. com.
Google Scholar
[33]
P. H. S. Torr and A. Zisserman, MLESAC: a new robust estimator with application to estimating image geometry, Comput. Vis. Image Underst., vol. 78, pp.138-156, (2000).
DOI: 10.1006/cviu.1999.0832
Google Scholar