[1]
K. Honda and A. Fujishima, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, vol. 238, 1972, pp.37-38.
DOI: 10.1038/238037a0
Google Scholar
[2]
T. Kawai and T. Sakata, Photocatalytic Hydrogen Production from Liquid Methanol and Water, Nature, vol. 286, 1980, pp.474-476.
Google Scholar
[3]
J. Schwitzgebel, J.G. Ekerdt, H. Gerischer and A. Heller, J. Phys, Role of the Oxygen Molecule and of the Photogenerated Electron in TiO2-Photocatalyzed Air Oxidation Reactions, The Journal of Physical Chemistry A, vol. 99, 1995, pp.5633-5638.
DOI: 10.1021/j100015a055
Google Scholar
[4]
K. Sunada, T. Watanabe and K. Hashimoto, J. Photochem, Bactericidal Activity of Copper-Deposited TiO2 Thin Film under Weak UV Light Illumination, Journal of Photochemistry and Photobiology A, vol. 156, 2003, pp.227-233.
DOI: 10.1021/es034106g
Google Scholar
[5]
K. Sunada, Y. Kikuchi, K. Hashimoto and A. Fujishima, TiO2 Photocatalysis: A Historical Overview and Future Prospects, Environmental Science & Technology, vol. 32, 1998, pp.726-728.
Google Scholar
[6]
C.C. Trapalis, P. Keivanidis, G. Kordas, M. Zaharescu, M. Crisan, A. Szatvanyi and M. Gartner, TiO(Fe3+) nanostructured thin films with antibacterial properties, Thin Solid Films, vol. 433, 2003, pp.186-190.
DOI: 10.1016/s0040-6090(03)00331-6
Google Scholar
[7]
Mills and S. LeHunte, J. Photochem, An overview of semiconductor photocatalysis, Journal of Photochemistry and Photobiology A, vol. 108, 1997, pp.1-35.
Google Scholar
[8]
Zywitzki, T. Modes, P. Frach, D. Gloss, Effect of structure and morphology on photocatalytic properties of TiO2 layers, Surface and Coatings Technology, vol. 202, 2008, pp.2488-2493.
DOI: 10.1016/j.surfcoat.2007.08.036
Google Scholar
[9]
N.P. Mellott, C. Durucan, C.G. Pantano, M. Guglielmi, Commercial and laboratory prepared titanium dioxide thin films for self-cleaning glasses: Photocatalytic performance and chemical durability, Thin Solid Films, vol. 502, 2006, pp.112-120.
DOI: 10.1016/j.tsf.2005.07.255
Google Scholar
[10]
H. Miyazaki, T. Hyodo, Y. Shimizu, M. Egashira, Hydrogen-sensing properties of anodically oxidized TiO2 film sensors Effects of preparation and pretreatment conditions, Sensors and Actuators B, vol. 108, 2005, pp.467-472.
DOI: 10.1016/j.snb.2004.10.056
Google Scholar
[11]
D. R. Acosta, A. I. Mart´ınez, A. A. L´opez1, C. R. Maga˜na, Titanium dioxide thin films: the effect of the preparation, Journal of Molecular Catalysis A: Chemical, vol. 228, 2005, pp.183-188.
Google Scholar
[12]
J.O. Carneiroa, V. Teixeira, A. Portinhaa, L. Dupa'ka, A. Magalha˜es, P. Coutinhob Study of the deposition parameters and Fe-dopant effect in the photocatalytic activity of TiO2 films prepared by dc reactive magnetron sputtering, , Vacuum, vol. 78, 2005, pp.37-46.
DOI: 10.1016/j.vacuum.2004.12.012
Google Scholar
[13]
C. Quan, S. H. Wang, C. J. Tay, H. M. Shang, K. C. Chan, Inspection of micro-cracks on solderball surface using a laser scattering method, Optics Communications, vol. 183, 2000, pp.19-27.
DOI: 10.1016/s0030-4018(00)00872-5
Google Scholar
[14]
C. J. Tay, S. H. Wang, C. Quan B. L. Ng, K.C. Chan, Surface roughness investigation of semi-conductor wafers, Optics & Laser Technology, vol. 36, 2004, pp.535-539.
DOI: 10.1016/j.optlastec.2003.12.010
Google Scholar
[15]
T. Lindstrom, D. Ronnow, Total Integrated Scattering from transparent substrates in the infrared region: validity of scalar theory, Optical Engineering, vol. 39, 2000, pp.478-487.
DOI: 10.1117/1.602386
Google Scholar
[16]
C. J. Tay, S. H. Wang, C. Quan, C. K. Ng, Surface roughness measurement of semi-conductor wafersusing a modified total integrated scattering model, Optik - International Journal for Light and Electron Optics, vol. 113, 2002, pp.317-321.
DOI: 10.1078/0030-4026-00169
Google Scholar
[17]
S. H. Wang, C Quan, C. J. Tay, HM Shang, Surface roughness measurement in the submicrometer range using laser scattering, Optical Engineering, vol. 39, 2000, pp.1597-1601.
DOI: 10.1117/1.602535
Google Scholar
[18]
E. Fogarassy, S. de Unamuno, B. Prevot, T. Harrer, S. Maresch, Experimental and numerical analysis of surface melt dynamics in 200 ns-excimer laser crystallization of a-Si films on glass, Thin Solid Films, vol. 383, 2001, pp.48-52.
DOI: 10.1016/s0040-6090(00)01627-8
Google Scholar
[19]
M. Hatano, S. Moon, M. Lee, K. Suzuki, Costas P. Grigoropoulos, Excimer laser-induced temperature field in melting and resolidification of silicon thin films, Journal of Applied Physics, vol. 87, 2000, pp.36-43.
DOI: 10.1063/1.371823
Google Scholar
[20]
M. Erdogan, Measurement of polished rock surface brightness by image analysis method, Engineering Geology, vol. 57, 2000, pp.65-70.
DOI: 10.1016/s0013-7952(99)00148-9
Google Scholar
[21]
H. J. Song, Excimer-laser-induced Phase Transformation of Si Thin Films on SiO2 at High Temperatures, Ph.D. Dissertation of Engineering and Applied Science, Columbia University, (1998).
Google Scholar
[22]
C. C. Kuo, Evaluation of probe lasers employed in optical diagnostics for phase transformation of thin films during excimer laser crystallization, Optics and lasers in Engineering , vol. 46, 2008, pp.440-445.
DOI: 10.1016/j.optlaseng.2008.01.008
Google Scholar
[23]
H.E. Bennett and J.O. Porteus, Relation between surface roughness and specular reflectance at normal incidence, Journal of the optical society of america A, vol. 51, 1961, pp.123-129.
DOI: 10.1364/josa.51.000123
Google Scholar
[24]
C. C. Kuo, Solidification velocity in liquid silicon during excimer laser crystallization, Applied Physics A: Materials, Science and Processing, vol. 95, 2009, pp.573-578.
DOI: 10.1007/s00339-008-4953-9
Google Scholar