A New Optical Technique for Surface Roughness Measurement of Tio2 Thin Films

Article Preview

Abstract:

A rapid optical inspection system for rapid measuring the surface roughness of titanium dioxide (TiO2) thin films is developed in this work. The incident angle of 60° is a good candidate for measuring surface roughness of TiO2 thin films and y = 90.391x + 0.5123 is a trend equation for predicting the surface roughness of TiO2 thin films. Roughness average (Ra) of TiO2 thin films (y) can be directly deduced from the peak power density (x) using the optical inspection system developed. The results were verified by white-light interferometer. The best measurement error rate of the optical inspection system developed can be controlled about 8.8%.The saving in inspection time of the surface roughness of TiO2 thin films is up to 83%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

831-838

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Honda and A. Fujishima, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, vol. 238, 1972, pp.37-38.

DOI: 10.1038/238037a0

Google Scholar

[2] T. Kawai and T. Sakata, Photocatalytic Hydrogen Production from Liquid Methanol and Water, Nature, vol. 286, 1980, pp.474-476.

Google Scholar

[3] J. Schwitzgebel, J.G. Ekerdt, H. Gerischer and A. Heller, J. Phys, Role of the Oxygen Molecule and of the Photogenerated Electron in TiO2-Photocatalyzed Air Oxidation Reactions, The Journal of Physical Chemistry A, vol. 99, 1995, pp.5633-5638.

DOI: 10.1021/j100015a055

Google Scholar

[4] K. Sunada, T. Watanabe and K. Hashimoto, J. Photochem, Bactericidal Activity of Copper-Deposited TiO2 Thin Film under Weak UV Light Illumination, Journal of Photochemistry and Photobiology A, vol. 156, 2003, pp.227-233.

DOI: 10.1021/es034106g

Google Scholar

[5] K. Sunada, Y. Kikuchi, K. Hashimoto and A. Fujishima, TiO2 Photocatalysis: A Historical Overview and Future Prospects, Environmental Science & Technology, vol. 32, 1998, pp.726-728.

Google Scholar

[6] C.C. Trapalis, P. Keivanidis, G. Kordas, M. Zaharescu, M. Crisan, A. Szatvanyi and M. Gartner, TiO(Fe3+) nanostructured thin films with antibacterial properties, Thin Solid Films, vol. 433, 2003, pp.186-190.

DOI: 10.1016/s0040-6090(03)00331-6

Google Scholar

[7] Mills and S. LeHunte, J. Photochem, An overview of semiconductor photocatalysis, Journal of Photochemistry and Photobiology A, vol. 108, 1997, pp.1-35.

Google Scholar

[8] Zywitzki, T. Modes, P. Frach, D. Gloss, Effect of structure and morphology on photocatalytic properties of TiO2 layers, Surface and Coatings Technology, vol. 202, 2008, pp.2488-2493.

DOI: 10.1016/j.surfcoat.2007.08.036

Google Scholar

[9] N.P. Mellott, C. Durucan, C.G. Pantano, M. Guglielmi, Commercial and laboratory prepared titanium dioxide thin films for self-cleaning glasses: Photocatalytic performance and chemical durability, Thin Solid Films, vol. 502, 2006, pp.112-120.

DOI: 10.1016/j.tsf.2005.07.255

Google Scholar

[10] H. Miyazaki, T. Hyodo, Y. Shimizu, M. Egashira, Hydrogen-sensing properties of anodically oxidized TiO2 film sensors Effects of preparation and pretreatment conditions, Sensors and Actuators B, vol. 108, 2005, pp.467-472.

DOI: 10.1016/j.snb.2004.10.056

Google Scholar

[11] D. R. Acosta, A. I. Mart´ınez, A. A. L´opez1, C. R. Maga˜na, Titanium dioxide thin films: the effect of the preparation, Journal of Molecular Catalysis A: Chemical, vol. 228, 2005, pp.183-188.

Google Scholar

[12] J.O. Carneiroa, V. Teixeira, A. Portinhaa, L. Dupa'ka, A. Magalha˜es, P. Coutinhob Study of the deposition parameters and Fe-dopant effect in the photocatalytic activity of TiO2 films prepared by dc reactive magnetron sputtering, , Vacuum, vol. 78, 2005, pp.37-46.

DOI: 10.1016/j.vacuum.2004.12.012

Google Scholar

[13] C. Quan, S. H. Wang, C. J. Tay, H. M. Shang, K. C. Chan, Inspection of micro-cracks on solderball surface using a laser scattering method, Optics Communications, vol. 183, 2000, pp.19-27.

DOI: 10.1016/s0030-4018(00)00872-5

Google Scholar

[14] C. J. Tay, S. H. Wang, C. Quan B. L. Ng, K.C. Chan, Surface roughness investigation of semi-conductor wafers, Optics & Laser Technology, vol. 36, 2004, pp.535-539.

DOI: 10.1016/j.optlastec.2003.12.010

Google Scholar

[15] T. Lindstrom, D. Ronnow, Total Integrated Scattering from transparent substrates in the infrared region: validity of scalar theory, Optical Engineering, vol. 39, 2000, pp.478-487.

DOI: 10.1117/1.602386

Google Scholar

[16] C. J. Tay, S. H. Wang, C. Quan, C. K. Ng, Surface roughness measurement of semi-conductor wafersusing a modified total integrated scattering model, Optik - International Journal for Light and Electron Optics, vol. 113, 2002, pp.317-321.

DOI: 10.1078/0030-4026-00169

Google Scholar

[17] S. H. Wang, C Quan, C. J. Tay, HM Shang, Surface roughness measurement in the submicrometer range using laser scattering, Optical Engineering, vol. 39, 2000, pp.1597-1601.

DOI: 10.1117/1.602535

Google Scholar

[18] E. Fogarassy, S. de Unamuno, B. Prevot, T. Harrer, S. Maresch, Experimental and numerical analysis of surface melt dynamics in 200 ns-excimer laser crystallization of a-Si films on glass, Thin Solid Films, vol. 383, 2001, pp.48-52.

DOI: 10.1016/s0040-6090(00)01627-8

Google Scholar

[19] M. Hatano, S. Moon, M. Lee, K. Suzuki, Costas P. Grigoropoulos, Excimer laser-induced temperature field in melting and resolidification of silicon thin films, Journal of Applied Physics, vol. 87, 2000, pp.36-43.

DOI: 10.1063/1.371823

Google Scholar

[20] M. Erdogan, Measurement of polished rock surface brightness by image analysis method, Engineering Geology, vol. 57, 2000, pp.65-70.

DOI: 10.1016/s0013-7952(99)00148-9

Google Scholar

[21] H. J. Song, Excimer-laser-induced Phase Transformation of Si Thin Films on SiO2 at High Temperatures, Ph.D. Dissertation of Engineering and Applied Science, Columbia University, (1998).

Google Scholar

[22] C. C. Kuo, Evaluation of probe lasers employed in optical diagnostics for phase transformation of thin films during excimer laser crystallization, Optics and lasers in Engineering , vol. 46, 2008, pp.440-445.

DOI: 10.1016/j.optlaseng.2008.01.008

Google Scholar

[23] H.E. Bennett and J.O. Porteus, Relation between surface roughness and specular reflectance at normal incidence, Journal of the optical society of america A, vol. 51, 1961, pp.123-129.

DOI: 10.1364/josa.51.000123

Google Scholar

[24] C. C. Kuo, Solidification velocity in liquid silicon during excimer laser crystallization, Applied Physics A: Materials, Science and Processing, vol. 95, 2009, pp.573-578.

DOI: 10.1007/s00339-008-4953-9

Google Scholar