The Critical Current of the Superconductor Having an Array of Hole with de Gennes Boundary Condition

Article Preview

Abstract:

We determine the critical current density of the superconductor having an array of hole exposed under electric current and under a perpendicular magnetic field. It is assumed that the inner holes sides are accounted in the de Gennes boundary condition while outer edge is in contact with vacuum. The critical current calculation was done after solving time dependent Ginzburg-Landau equation and evaluating the electric voltage. The enhancement factor of the critical currents due to the boundary condition is discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

862-866

Citation:

Online since:

October 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Polat, O.  Aytug, T.  Paranthaman, M.  Kim, K.  Lupini, A.R.  Meyer, H.M.  Qiu, X.  Thompson, J.R.  Christen, D.K.  Selvamanickam, V. , IEEE Trans. on Appl. Supercon., vol. 21, p.3171 – 3174, July (2011).

DOI: 10.1109/tasc.2010.2081333

Google Scholar

[2] I. Pallecchi, C. Tarantini, H. U. Aebersold, V. Braccini, C. Fanciulli, C. Ferdeghini, F. Gatti, E. Lehmann, P. Manfrinetti, D. Marré, A. Palenzona, A. S. Siri, M. Vignolo, and M. Putti, Calculation of the volume pinning force in MgB2 superconductors, , Phys. Rev. B 71, 2005, 212507.

DOI: 10.1103/physrevb.71.212507

Google Scholar

[3] V. V. Moshchalkov, M. Baert, V. V. Metlushko, E. Rosseel, M. J. Van Bael, K. Temst, and Y. Bruynseraede,R. Jonckheere, Pinning by an antidot lattice: "The problem of the optimum antidot size, Phys. Rev. B 57, 1998, 3615–3622.

DOI: 10.1103/physrevb.57.3615

Google Scholar

[4] A. V. Silhanek, L. Van Look, R. Jonckheere, B. Y. Zhu, S. Raedts, and V. V. Moshchalkov, Enhanced vortex pinning by a composite antidot lattice in a superconducting Pb film, Phys. Rev. B 72, 2005, 014507.

DOI: 10.1103/physrevb.72.014507

Google Scholar

[5] M. Kemmler, C. Gurlich, A. Sterck, H. Pohler, M. Neuhaus, M. Siegel, R. Kleiner, and, D. Koelle, Commensurability Effects in Superconducting Nb Films with Quasiperiodic Pinning Arrays,, Phys. Rev. Lett. 97, 2006, 147003.

DOI: 10.1103/physrevlett.97.147003

Google Scholar

[6] A.V. Silhanek , L. Van Look, R. Jonckheere, B.Y. Zhu, S. Raedts, V.V. Moshchalkov, Enhanced vortex trapping by a composite antidot lattice in a superconducting Pb film, Physica C 460–462, 2007, 1434–1435.

DOI: 10.1016/j.physc.2007.04.144

Google Scholar

[7] C. Reichhardt , G.T. Zimanyi, R. T. Scalettar, A. Hoffmann, Ivan K. Schuller, Individual and multiple vortex pinning in systems with periodic pinning arrays, Phys. Rev. B 64, 2001, 052503.

DOI: 10.1103/physrevb.64.052503

Google Scholar

[8] A V Silhanek, J Van de Vondel, A Leo, G W Ataklti, W Gillijns and V V Moshchalkov, Pinning centers produced by magnetic microstructures, Supercond. Sci. Technol. 22, 2009, 034002.

DOI: 10.1088/0953-2048/22/3/034002

Google Scholar

[9] Harsojo, Abraha Kamsul, Nurwantoro Pekik, Commensurate effects in the square superconductor with a regular holes array, AIP Conference Proceedings, Volume 1169, 2009, 132-137.

DOI: 10.1063/1.3243240

Google Scholar

[10] G.C. Buscaglia, C. Bolech, A. Lopez, 2000, Connectivity and Superconductivity, in: J. Berger, J. Rubinstein (Eds), Springer.

Google Scholar

[11] J. Barba Ortega, Clecio C. De Souza, J. Albino Aguiar, Superconducting slab in contact with thin superconducting layer at higher critical temperature, Physica C 469, 2009, , 852-856.

DOI: 10.1016/j.physc.2009.06.001

Google Scholar

[12] M. Machida and H. Kaburaki, Direct Numerical Experiment on Two-Dimensional Pinning Dynamics of a Three-Dimensional Vortex Line in Layered Superconductors, Phys. Rev. Lett. 75, 1995, 3178.

DOI: 10.1103/physrevlett.75.3178

Google Scholar

[13] C. Reichhardt and C. J. Olson Reichhardt, Transverse commensurability effect for vortices in periodic pinning arrays, Phys. Rev. B 78, 2009, 180507.

DOI: 10.1103/physrevb.78.180507

Google Scholar