Enhanced Sensitivity of Microcantilever Surface Stress Sensor

Article Preview

Abstract:

In this paper a novel L-shape microcantilever that is more sensitive in compare of traditional rectangular microcantilever is proposed. In traditional microcantilever surface stress sensor a slight momentum is induced by distributed area stress lead to a slight deformation. In contrast, the proposed sensor substitution the slight momentum with concentrated point force in lateral direction on the tip of the microcantilever. This lead to, mechanically amplifies of the influence of area stress and more displacement. In addition, it has been theoretically proved that proposed microcantilever sensor with same lateral area in compare with traditional microcantilever surface stress sensor can be 2 to 100 orders more sensitive. The proposed L-shape microcantilever configuration of sensor could be incorporated in most of the microfabrication processes. However in this paper we use a low cost fabrication method based on polymeric microcantilever with metal piezoresistive detection.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

892-898

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Shekhawat, S.H. Tark, V. P. Dravid; MOSFET-Embedded Microcantilevers for Measuring Deflection in Biomolecular Sensors,; Science 311 (2006) 1592–1595.

DOI: 10.1126/science.1122588

Google Scholar

[2] D.R. Baselt, G.U. Lee, K.M. Hansen, L.A. Chrisey and R.J. Colton; A High-Sensitivity Micromachined Biosensor,; PROCEEDINGS OF THE IEEE, VOL. 85, NO. 4, APRIL 1997; 672-680.

DOI: 10.1109/5.573755

Google Scholar

[3] Louia, F.T. Goerickeb, T.V. Rattoa, J. Leeb, B.R. Harta W.P. Kingb; The effect of piezoresistive microcantilever geometry on cantilever sensitivity during surface stress chemical sensing,; Sensors and Actuators A 147 (2008) 516–521.

DOI: 10.1016/j.sna.2008.06.016

Google Scholar

[4] S. Sukuabol, D. K. Sood and G. Rosengarten; Geometric Optimisation of SU-8 Piezoresistive Cantilever Sensors for Biochemical Applications,; Intelligent Sensors, Sensor Networks and Information Processing, 2005 , pp.247-252.

DOI: 10.1109/issnip.2005.1595587

Google Scholar

[5] M. Yang, X. Zhang, K. Vafai and C. S Ozkan; High sensitivity piezoresistive cantilever design and optimization for analyte-receptor binding,; J. Micromech. Microeng. 13 (2003) 864–872.

DOI: 10.1088/0960-1317/13/6/309

Google Scholar

[6] Y. Zhang, Q. Ren and Ya-pu Zhao; Modelling analysis of surface stress on a rectangular cantilever beam,; J. Phys. D: Appl. Phys. 37 (2004) 2140–2145.

DOI: 10.1088/0022-3727/37/15/014

Google Scholar

[7] Chen G.Y., Thundat T., Wachter E.A., and Warmack R.J., Adsorption- Induced Surface Stress and Its Effects on Resonance Frequency of Microcantilevers, Journal of Applied Physics, 77 (8), pp.3618-3622, (1995).

DOI: 10.1063/1.359562

Google Scholar

[8] Stubbs, D.D., Lee, S., Hunt, W.D., Molecular recognition for electronic noses using surface acoustic wave immunoassay sensors,; IEEE Sensors Journal, Vol. 2 No. 4, (2002), 294-300.

DOI: 10.1109/jsen.2002.803745

Google Scholar

[9] Westhoff, E., Water: an integral part of nucleic acid structure, Ann. Rev. Biophys. Biophysical Chem., 17, (1998), Pg. 125-144.

Google Scholar

[10] Gersten, D. and Marchalonis, J., An improved method for immobilizing IgG antibodies on protein A-agarose, J. of Immunol Methods , 127, (1990) 215-219.

Google Scholar

[11] P. A. Rasmussen, Cantilever-based Sensors for Surface Stress Measurements, Ph.D. Thesis, Department of Micro and Nanotechnology, Technical University of Denmark, August (2003).

Google Scholar

[12] S.H. Lee, D. D. Stubbs, J. Cairney, and W. D. Hunt, Rapid Detection of Bacterial Spores Using a Quartz Crystal Microbalance (QCM) Immunoassay, IEEE SENSORS JOURNAL, VOL. 5, NO. 4, Pg. 737-743, (2005).

DOI: 10.1109/jsen.2005.848124

Google Scholar

[13] S. V, A. Rajorya, P. Pant, S. Mukherji, V. R. Rao; Polymer microcantilever biochemical sensors with integrated polymer composites for electrical detection,; Solid State Sciences 11 (2009) 1606–1611.

DOI: 10.1016/j.solidstatesciences.2009.06.009

Google Scholar

[14] J. Thaysen, A.D. Yalcinkaya, P. Vettiger and A. Menon; Polymer-based stress sensor with integrated readout,; J. Phys. D: Appl. Phys. 35 (2002) 2698–2703.

DOI: 10.1088/0022-3727/35/21/302

Google Scholar

[15] N.S. Kale, S. Nag, R. Pinto V.R. Rao; Fabrication and Characterization of a Polymeric Microcantilever With an Encapsulated Hotwire CVD Polysilicon, Journal Of Microeletromechanical Systems, vol. 18, n. 1, pp.79-87, (2009).

DOI: 10.1109/jmems.2008.2008577

Google Scholar

[16] D. R. Baselt, G. U Lee, and R. J. Colton, Biosensor based on force microscope technology, J. Vac. Sci. Technol. B, Vol. 14, No. 2, pp.789-793, (1996).

DOI: 10.1116/1.588714

Google Scholar

[17] Sanii and P. D. Ashby, High Sensitivity Deflection Detection of Nanowires.

Google Scholar

[18] D. Sameoto, S-W. Lee and M. Parameswaran; Electrical interconnection through optimized wirebonding onto SU-8 structures and actuators,; J. Micromech. Microeng. 18 (2008) 075023 (8pp).

DOI: 10.1088/0960-1317/18/7/075023

Google Scholar

[19] A. Johansson, J. Janting, P. Schultz, K. Hoppe, I. N. Hansen and A. Boisen1, SU-8 cantilever chip interconnection,; J. Micromech. Microeng. 16 (2006).

DOI: 10.1088/0960-1317/16/2/016

Google Scholar