[1]
Harris WH. The problem is osteolysis. Clin Orthop 1995; 311: 46–53.
Google Scholar
[2]
National Joint Registry for England and Wales, 4Th Annual Report 2007. ISSN 1753-9382. www. njrcentre. org. uk.
Google Scholar
[3]
Passuti N, Philippeau JM, Gouin F. Friction couples in total hip replacement. Orthop & Trauma: Surg & Res 2009 ; 955 : 27-34.
DOI: 10.1016/j.otsr.2009.04.003
Google Scholar
[4]
Lombardi Jr. AV, Mallory TH, Vaughn BK, Drouillard P. Asceptic loosening in total hip arthroplasty secondary to osteolysis induced by wear debris from titanium-alloy modular femoral heads. J Bone Joint Surg Am 1989; 71A: 1337–42.
DOI: 10.2106/00004623-198971090-00009
Google Scholar
[5]
Bragdon CR, O'Connor DO, Muratoglu OK. A new polyethylene with undetectable wear at 12 million cycles. Trans 24th Soc Biomaterials 1998; 21: 2.
Google Scholar
[6]
Muratogolu OK, Bragdon CR, O'Connor DO, Jasty M, Harrris WH. A novel method of cross-linking ultra-high-molecular-weight polyethylene to improve wear, reduce oxidation and retain mechanical properties. J Arthroplasty 2001; 16: 149–160.
DOI: 10.1054/arth.2001.20540
Google Scholar
[7]
Hermida JC, Bergula A, Chen P, et al. Comparison of the wear rates of twenty-eight and thirty-two millimetre femoral heads on crosslinked polyethylene acetabular cups in a wear simulator. J Bone Joint Surg Am 2003; 85: 2325–2331.
DOI: 10.2106/00004623-200312000-00009
Google Scholar
[8]
Greenwald A, Garino JP. Alternative bearing surfaces: the good, the bad and the ugly. J Bone Joint Surg Am 2001; 83-A: 68–72.
DOI: 10.2106/00004623-200100022-00002
Google Scholar
[9]
Clarke IC, Good V, Williams P. Ultra low wear rates for rigid on rigid bearings in total hip replacements. Proc Inst Mech Eng (H) 2000; 214: 331–347.
DOI: 10.1243/0954411001535381
Google Scholar
[10]
Mahoney OM, Dimron II JH. Unsatisfactory results with ceramic total hip prosthesis. J Bone Joint Surg Am 1990; 72A: 663–671.
DOI: 10.2106/00004623-199072050-00004
Google Scholar
[11]
Koo KH, Ha YC, Jung WH, Kim SR, Yoo JJ, Kim HJ. Isolated fracture of the ceramic head after third-generation alumina-on-alumina total hip arthroplasty. J Bone Joint Surg Am 2008; 90: 329–36.
DOI: 10.2106/jbjs.f.01489
Google Scholar
[12]
McMinn D, Treacy R, Lin K, Pynsent P. Metal on metal surface replacement of the hip. experience of the mcminn prosthesis. Clin Orthop Relat Res 1996; (329 Suppl): 89-98.
DOI: 10.1097/00003086-199608001-00009
Google Scholar
[13]
Amstutz HC, Grigoris P, Dorey FJ. Evolution and future of surface replacement of the hip. J. Orthopaedic Science 1998; 3(3): 169-186.
DOI: 10.1007/s007760050038
Google Scholar
[14]
Ebied A, Journeaux SF, Pope JA. Hip resurfacing arthroplasty: the liverpool experience. International Conference: Engineers and Surgeons - Joined at the Hip, 2002. London, UK, IMechE.
Google Scholar
[15]
Merritt K, Brown SA. Distribution of cobalt chromium wear and corrion products and biological reactions. Clin Orthop Relat Res 1996; (329 Suppl): 233-243.
Google Scholar
[16]
Ingham E, Fisher J. Biological reactions to wear debris in total joint replacement. Proc. Inst. Mech. Eng. Part H-J. Eng. in Medicine 2000; 214(H1): 21-37.
DOI: 10.1243/0954411001535219
Google Scholar
[17]
MacDonald SJ, McCalden RW, Chess DG, Bourne RB, Rorabeck CH, Cleland D, Leung F. Metal-on-metal versus polyethylene in hip arthroplasty: a randomized clinical trial. Clin Orthop Relat Res 2003; (406): 282-296.
DOI: 10.1097/00003086-200301000-00039
Google Scholar
[18]
Brodner W, Bitzan P, Meisinger V, Kaider A, Gottsauner-Wolf F, Kotz R. Elevated serum cobalt with metal on metal articulating surfaces. J Bone Joint Surg B 1997; 79: 316–32 activity and ions in patients with metal on metal bearing hip prostheses. J Bone Joint Surg A 2005; 87: 781–787.
DOI: 10.1302/0301-620x.79b2.0790316
Google Scholar
[19]
Heisel C, Silva M, Skipor AK, Jacobs JJ, Schmalzreid TP. The relationship between activity and ions in patients with metal on metal bearing hip prostheses. J Bone Joint Surg Am 2005; 87: 781–787.
DOI: 10.2106/jbjs.d.01820
Google Scholar
[20]
Firkins PJ, Tipper JL, Ingham E, et al. A novel low wearing differential hardness ceramic-on-metal hip joint prosthesis. J Biomech 2001; 34: 1291–1298.
DOI: 10.1016/s0021-9290(01)00096-3
Google Scholar
[21]
Williams S, Ingham E, Isaac G, et al. Ceramic on metal hip replacements: Part 1 in vitro testing. (extended abstract at the London hip meeting. London 2007).
Google Scholar
[22]
Gupta S, New AMR, Taylor M. Bone remodelling inside a cemented resurfaced femoral head. Clin Biomech 2006; 21(6): 594–602.
DOI: 10.1016/j.clinbiomech.2006.01.010
Google Scholar
[23]
Pal B, Gupta S, New AMR. Design considerations for ceramic resurfaced femoral head: effect of interface characteristics on failure mechanisms. Comput Methods Biomech Biomed Eng 2009; 3: 1-13.
DOI: 10.1080/10255840903067064
Google Scholar
[24]
Watanabe Y, Shiba N, Matsuo S, Higuchi F, Tagawa Y, Inoue A. Biomechanical study of the resurfacing hip arthroplasty: finite element analysis of the femoral component. J Arthroplasty 2000; 15(4): 505-511.
DOI: 10.1054/arth.2000.1359
Google Scholar
[25]
Thompson MS, Northmore-Ball MD, Tanner KE. Effects of acetabular resurfacing component material and fixation on the strain distribution in the pelvis. Proc Inst Mech Eng [H] 2002; 216(4): 237-245.
DOI: 10.1243/09544110260138727
Google Scholar
[26]
Banchet V, Fridrici V, Abry JC, Kapsa Ph. Wear and friction characterization of materials for hip prosthesis. Wear 2007; 263: 1066-1071.
DOI: 10.1016/j.wear.2007.01.085
Google Scholar
[27]
Dalstra M, Huiskes R. Load transfer across the pelvic bone. J. Biomechanics 1995; 28(6): 715-724.
DOI: 10.1016/0021-9290(94)00125-n
Google Scholar
[28]
Taylor M, Tanner KE, Freeman, MAR, Yettram AL. Cancellous bone stresses surrounding the femoral component of a hip prosthesis: an elastic-plastic finite element analysis. Med Eng Physics 1995; 17(7): 544-550.
DOI: 10.1016/1350-4533(95)00018-i
Google Scholar
[29]
Mai MT, Schmalzried TP, Dorey FJ, Campbell PA, Amstutz HC. The contribution of frictional torque to loosening at the cement-bone interface in tharies hip replacements. J Bone and Joint Surg. American Volume 1996; 78(4): 505-511.
DOI: 10.2106/00004623-199604000-00004
Google Scholar
[30]
Anderson AE, Peters CL, Tuttle BD, Weiss JA. Subject-specific finite element model of the pelvis: development, validation and sensitivity studies. J Biomech Eng 2005; 127: 364-373.
DOI: 10.1115/1.1894148
Google Scholar
[31]
Mantell SC, Chanda H, Bechtold, JE, Kyle RF. A parametric study of acetabular cup design variables using finite element analysis and statistical design of experiments. J Biomech Eng-Trans Asme 1998; 120(5): 667-675.
DOI: 10.1115/1.2834760
Google Scholar
[32]
Bergmann G, Graichen F, Rohlmann A. Hip joint loading during walking and running, measured in two patients. J. Biomechanics 1993; 26(8): 969-990.
DOI: 10.1016/0021-9290(93)90058-m
Google Scholar
[33]
Bergmann G, Deuretzbacher G, Heller M, Graichen F, Rohlmann A, Strauss, J, Duda GN. Hip contact forces and gait patterns from routine activities. J. Biomechanics 2001; 34(7): 859-871.
DOI: 10.1016/s0021-9290(01)00040-9
Google Scholar
[34]
Jin ZM, Stone M, Ingham E, Fisher J. Biotribology. Current Orthop 2006; 20: 32-40.
Google Scholar
[35]
Dowson D. A comparative study of the performance of metallic and ceramic femoral head components in total replacement hip joints. Wear 1995; 190(2): 171-183.
DOI: 10.1016/0043-1648(96)80015-9
Google Scholar
[36]
Kurtz SM, Muratoglu OK, Evans M, Edidin AA. Advances in the processing, sterilization, and crosslinking of ultra-high molecular weight polyethylene for total joint arthroplasty. Biomat 1999; 20: 1659-1688.
DOI: 10.1016/s0142-9612(99)00053-8
Google Scholar
[37]
Buford A, Goswami T. Review of wear mechanisms in hip implants: Paper 1- General. Materials and Design 2004; 25: 385-393.
DOI: 10.1016/j.matdes.2003.11.010
Google Scholar
[38]
Cooper JR, Dowson D, Fisher J. Macroscopic and microscopic wear mechanisms in ultra-high molecular weight polyethylene. Wear 1993; 162-164: 378-384.
DOI: 10.1016/0043-1648(93)90521-m
Google Scholar
[39]
Wang A, Essner A, Polineni VK, Stark C, Dumbleton JH. Lubrication and wear of ultra-high molecular weight polyethylene in total joint replacements. Trib Int 1998; 31: 17-33.
DOI: 10.1016/s0301-679x(98)00005-x
Google Scholar
[40]
Capitanu L, Vladareanu L, Onisoru J, Iarovici A. Biomechanics and biotribology of orthopaedic knee prostheses. Rev. Roum. Sci. Techn. – Méc Appl., Tome 2008; 53 (3): 289–307.
Google Scholar
[41]
Hall RM, Banks MJK, Blunn G. Biotribology for joint replacements. Current Orthop 2001; 15: 281-290.
Google Scholar
[42]
Semlitsch M, Willert HG. Clinical wear behavior of ultra-high molecular weight polyethylene cups paired with metal and ceramic ball heads in comparison to metal-on-metal pairings of hip joint replacements. Inst Mech Eng 1997; 211 (H1): 73-88.
DOI: 10.1243/0954411971534700
Google Scholar
[43]
Essner A, Sutton K, Wang A. Hip simulator wear comparison of metal-on-metal, ceramic-on-ceramic and crosslinked UHMWPE bearings. Wear 2005; 259: 992-995.
DOI: 10.1016/j.wear.2005.02.104
Google Scholar
[44]
Ostermann PA, Henry SL. Treatment of the ipsilateral femur shaft and femur neck fractures with the Russell-Taylor reconstruction nail. Chirurg 1994; 65: 1042–1045.
Google Scholar
[45]
Wolinsky PR, Johnson KD. Ipsilateral femoral neck and shaft fractures. Clin Orthop 1995; 313: 81–90.
Google Scholar
[46]
Vidyadhara S, Rao SK. Cephalomedullary nails in the management of ipsilateral neck and shaft fractures of the femur—One or two femoral neck screws? Injury. Int J Care Injured 2009; 40: 296-303.
DOI: 10.1016/j.injury.2008.08.009
Google Scholar
[47]
Stegaroiu R, Ejiri S, Kurokawa K, Sato T, Sato Y, Nomura S. Isotropic heterogeneous FEM model versus isotropic and anisotropic homogeneous models. IADR 83rd General Session and Exhibition Toronto (2008).
Google Scholar