Determining of Infrared Transition of InN Film Grown on C-Plane Sapphire by Photoreflectance

Article Preview

Abstract:

An InN film was grown on sapphire (c-plane) by plasma-assisted molecular beam epitaxy, and its photoluminescence at 10 K and photoreflectance (PR) spectra from 10 K to 110 K were measured. Some prominent features in the PR spectra were observed in the infrared region below 120 K. The signals become too weak to observable for temperature above 110K. Furthermore, the binding energy of InN exciton was estimated to be 9.43 meV, which is equal to kBT at 109K. Therefore, the features in the PR spectra were assigned to the A, B, and C excitonic transitions associated with the direct gap of wurtzite InN. The thus obtained energies of the A, B, and C excitonic transitions versus temperature were fitted well by Varshini’s equation. The energies of the A, B, and C excitonic transitions at room temperature obtained by the best fit of Varshni’s equation are 0.738, 0.746, and 0.764 eV, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

985-990

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, J. appl. Phys. 94 2779 (2003), and references therein.

Google Scholar

[2] S. Gwo, C. -L. Wu, C. -H. Shen, W. -H. Chang, T. M. Hsu, J. -S. Wang, and J. -T. Hsu, Appl. Phys. Lett. Vol. 84, 2004, p.3765.

Google Scholar

[3] V. Yu. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmüller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul, Phys. Status Solidi vol. B 229, 2002, pp. R1.

DOI: 10.1002/1521-3951(200202)229:3<r1::aid-pssb99991>3.0.co;2-o

Google Scholar

[4] V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, D. A. Kurdyukov, S. V. Ivanov, F. Bechstedt, J. Furthmüller, J. Aderhold, J. Graul, A. V. Mudryi, H. Harima, A. Hashimoto, A. Yamamoto, and E. E. Haller, Phys. Status Solidi vol. B 234, 2002, p.787.

DOI: 10.1002/1521-3951(200212)234:3<787::aid-pssb787>3.0.co;2-h

Google Scholar

[5] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, Appl. Phys. Lett. vol. 80, 2002, p.3967.

DOI: 10.1063/1.1482786

Google Scholar

[6] J. Wu, W. Walukiewicz, W. shan, K. M. Yu, J. W. Ager III, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, Appl. Phys. Lett. vol. 94, 2003, p.4457.

Google Scholar

[7] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, Appl. Phys. Lett. Vol. 81, 2002, p.1246.

Google Scholar

[8] K. Xu, and A. Yoshikawa, Appl. Phys. Lett. vol. 83, 2003, p.251.

Google Scholar

[9] T. L. Tansley and C. P. Foley, J. Appl. Phys. vol. 59, 1986, p.3241.

Google Scholar

[10] Q. Guo and A. Yoshida, Jpn. J. Appl. Phys., Part 1 vol. 33, 1994, p.2453.

Google Scholar

[11] T. Yodo, H. Yona, H. Ando, D. Nosei, and Y. Harada, Appl. Phys. Lett. 80, 968, (2002).

Google Scholar

[12] L. W. Tu, C. L. Hsiao, T. W. Chi, I. Lo, and K. Y. Hsieh, Appl. Phys. Lett. vol. 82, 2003, p.1601.

Google Scholar

[13] See, for example, R. N. Bhattacharya, H. Shen, P. Parayanthal, and F. H. Pollak, Phys. Rev. vol. B 37, 1988, p.4044.

Google Scholar

[14] D. E. Aspnes, in Optical properties of Solids, edited by M. Balkanski, North-Holland, Amsterdam, 1980, Chap. 4A.

Google Scholar

[15] F. H. Pollak and O. J. Glembocki, SPIE Proc. Vol. 946, 1988, p.2.

Google Scholar

[16] V. Yu. Davydov et al., Appl. Phys. Lett. vol. 75, 1999, p.3297.

Google Scholar

[17] Fabio Bernardini and Vincenzo Fiorentini, Phys. Rev. vol. B 58, 1998, p.15292.

Google Scholar

[18] S. P. Fu and Y. F. Chen, Appl. Phys. Lett. vol. 85, 2004, p.9.

Google Scholar