Effects of Annealing Temperature on Properties of CuIn (Se,S)2 Film Prepared by Sputtering

Article Preview

Abstract:

This paper examines CuIn(Se,S)2 (CISS) films prepared by sputtering precursor films of In, Cu, and In2S3 onto Mo coated soda-lime glass, followed by a single-stage selenium annealing process to form a CISS chalcopyrite phase. In this study, S was substituted for Ga to increase the energy gap of CuInSe-based materials. Experimental results reveal that the composition of (S + Se) and S decreased slightly with an increase in the selenium annealing temperature, exhibiting uniform distribution throughout the entire CISS film sample. The resulting CISS film exhibited p-type conductivity with an energy gap of 1.11eV. The optimum selenium annealing condition for the CIGS precursor prepared by sputtering was 798 K for 20 minutes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1284-1288

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Kaelin, D. Rudmann, and A.N. Tiwari, Sol. Energy, 77, (2004), p.749

Google Scholar

[2] M. Bär, W. Bohne, J. Röhrich, E. Strub, S. Lindner, M.C.L. Steiner, and C.H. Fischer, J. Appl. Phys., 96, (2004), p.3857

Google Scholar

[3] M. Marudachalam, R.W. Birkmire, H. Hichri, J.M. Schultz, A. Swartzlander, and M.M. Al-Jassim, J. Appl. Phys., 82, (1997), p.2896

DOI: 10.1063/1.366122

Google Scholar

[4] V. Alberts, Semicond. Sci. Technol., 19, (2004), p.65

Google Scholar

[5] J. Bekker, Sol. Energy Mater. Sol. Cells, 93, (2009), p.539

Google Scholar

[6] C.J. Sheppard and V. Alberts, J. Phys. D: Appl. Phys., 39, (2006), p.3760

Google Scholar

[7] M. Bär, W. Bohne, J. Röhrich, E. Strub, S. Lindner, M.C.L. Steiner, and C.H. Fischer, J. Appl. Phys., 96, (2004), p.3857

Google Scholar

[8] S.H. Wei and A. Zunger, J. Appl. Phys., 78, (1995), p.3846

Google Scholar

[9] C. Dzionk, H. Metzner, S. Hessler, and H.E. Mahnke, Thin Solid Films, 299, (1997), p.38

DOI: 10.1016/s0040-6090(96)09449-7

Google Scholar

[10] S. Chichibu, T. Shioda, T. Irie, and H. Nakanishid, J. Appl. Phys., 84, (1998), p.522

Google Scholar

[11] S.N. Kundu, M. Basu, S. Chaudhuri, and A.K. Pal, Thin Solid Films, 339, (1999), p.44

Google Scholar

[12] V. Alberts, J. Titus, R.W. Birkmire, Thin Solid Films, 451-452, (2004), p.207

Google Scholar

[13] I. Dirnstorfer, W. Burkhardt, W. Kriegseis, I. Österreicher, H. Alves, D.M. Hofmann, O. Ka, A. Polity, B.K. Meyer, and D. Braunger, Thin Solid Films, 361-362, (2000), p.400

DOI: 10.1016/s0040-6090(99)00810-x

Google Scholar

[14] Y. C. Lin,, J. H. Ke, W. T. Yen, S. C. Liang, C. H. Wu ,and C. T. Chiang, Appl. Surf. Sci., 257, (2011), p.4278

Google Scholar

[15] C. Dzionk, H. Metzner, S. Hessler, and H.E. Mahnke, Thin Solid Films, 299, (1997), p.38

DOI: 10.1016/s0040-6090(96)09449-7

Google Scholar

[16] S. Chichibu, T. Shioda, T. Irie, and H. Nakanishid, J. Appl. Phys., 84, (1998), p.522

Google Scholar