[1]
J.M. Gersting, Hydrodynamic stability of plane porous slip flow, Phys. Fluids 17 (1974) 2126-2127.
DOI: 10.1063/1.1694672
Google Scholar
[2]
A. Spille, A. Rauh, H. Bühring, Critical curves of plane Poiseuille flow with slip boundary conditions, Nonlinear Phenomena in Complex Systems 3 (2000) 171-173.
Google Scholar
[3]
E. Lauga, C. Cossu, A note on the stability of slip channel flows, Phys. Fluids 17 (2005) 088106.
DOI: 10.1063/1.2032267
Google Scholar
[4]
C.J. Gan, Z.N. Wu, Short-wave instability due to wall slip and numerical observation of wall-slip instability for microchannel flows, J. Fluid Mech. 550 (2006) 289-306.
DOI: 10.1017/s0022112005008086
Google Scholar
[5]
L. Ren, J.G. Chen, K.Q. Zhu, Dual role of wall slip on linear stability of plane Poiseuille flow, Chin. Phys. Lett. 25 (2008) 601-603.
DOI: 10.1088/0256-307x/25/2/067
Google Scholar
[6]
Y.X. Zhu, S. Granick, Limits of the hydrodynamic no-slip boundary condition, Phys. Rev. Lett. 88 (2002) 106102.
DOI: 10.1103/physrevlett.88.106102
Google Scholar
[7]
G. Ahmadi, Stability of a micropolar fluid layer heated from below, Int. J. Engng Sci. 14 (1976) 81-89.
DOI: 10.1016/0020-7225(76)90058-6
Google Scholar
[8]
G.P. Galdi, Nonlinear stability of the magnetic Bénard problem via a generalized energy method, Arch. Rat. Mech. Anal. 87 (1985) 167-186.
DOI: 10.1007/bf00280699
Google Scholar
[9]
G.P. Galdi, M. Padula, A new approach to energy theory in the stability of fluid motion, Arch. Rat. Mech. Anal. 110 (1990) 187-286.
DOI: 10.1007/bf00375129
Google Scholar
[10]
P.G. Drazin, W.H. Reid, Hydrodynamic Stability, Cambridge University Press, Cambridge, 1981.
Google Scholar
[11]
P.J. Schmid, D.S. Henningson, Stability and Transition in Shear Flows, Springer, New York, 2001.
Google Scholar
[12]
W.O. Criminale, T.L. Jackson, R.D. Joslin, Theory and Computation of Hydrodynamic Stability, Cambridge University Press, Cambridge, 2003.
Google Scholar